International Journal of Advanced Innovative Technology
in Engineering (IJAITE), Vol. 1, Issue 4, July-2016 ISSN: 2455-6491

“AUTOMATED BUG CLASSIFICATION AND TRAIGE SYSTEM USING HYBRID
ALGORITHM BASED ON DATA MINING”

'RAHUL V. BAMBODKAR
M. Tech Student, Department of Computer Science & Engineering, REC, Bhopal, India
rahulbambodkarl@gmail.com

’PROF. SHIVENDRA DUBEY
Assistant Professor, Department of Computer Science & Engineering, REC, Bhopal, India
shivendradubey5@gmail.com

ABSTRACT: Flaw is only a blunder or bug which produces unforeseen and mistaken result. In Companies all product tasks are
influenced by programming Flaws (bug).Every day new bugs are created and engineer needs to alter that bug or imperfection.
Programming Company spends heaps of cash to alter them. Settling bug is hard so we will diminish this by utilizing some
technique. Every time when bug is created we have to arrange that bug and for that reason we require classifier. Classifier is the
procedure by which we can arrange the bug with the goal that we decide at which class that bug is have a place. In this paper we
are utilizing two procedures NB (naive bayes) and KNN (k-nearest neighbour) for arrangement. NB depends on recurrence and
KNN depends on word check. After the arrangement the bug is grouped and administrator can allocate them to the designer to
alter. In this paper we likewise present element choice and example choice for diminishing database. Bug storehouse is the
database which is utilized to store bug points of interest. In this paper mix of NB and KNN classifier is utilized which is more
effective and take less time to arrange the bug so that administrator can allocate a legitimate bug of specific class to the ideal
designer AND the bug will settle effortlessly. In the past paper manual triaging framework is utilized which is not effective and
taking an excessive amount of time. In this paper we enhancing imperfection triage furthermore decreasing the database by

utilizing these two systems.

Keywords: bug triage, bug data reduction, bug classification technique.

1. INTRODUCTION

The vast majority of the organizations burn through

45% of expense in managing the product bugs. This bug
squander the season of engineer who build up the venture. In
this paper we enhance the imperfection triage by utilizing
order strategy furthermore lessening the database .the
information which is not valuable for altering the bug we will
expel it. This all procedure is goes under the preprocessing
where all the undesirable information is expelled and
administrator get legitimate information which portray the
bug subtle element. For putting away this bug point of
interest we require database this is called bug archive.
Open source programming advancements fuse an open bug
store that permits both designers and clients to post issues
experienced with the product, propose conceivable
improvements, and remark after existing bug reports. One
potential point of interest of an open bug vault is that it might
permit more bugs to be recognized and fathomed, enhancing
the nature of the product created [12].

For overseeing programming bugs bug storehouse
or bug settling assumes an essential part. Vast of
programming which are open source ventures have an open
bug archive which permits designers and also clients to
submit issues or surrenders in the product that propose
conceivable arrangements and remark on existing bug
reports. The quantity of customary happening bugs for open
source huge scale programming tasks is so much expansive
that makes the triaging procedure exceptionally troublesome
and testing .For altering programming bugs a large portion of
programming organizations pays a great deal . The
substantial scale and the low quality are primary two
difficulties which are connected with bug information that

may influence the successful utilization of bug archives in
programming advancement tasks. Bug is kept up as a bug
report in a bug store that records the recreating bug in literary
frame and upgrades as per the status of bug altering [1].

This paper presents Preprocessing and
Classification. Preprocessing is the procedure where
undesirable information will evacuate and we get the helpful
information for grouping and For Classification this two
strategies NB (gullible base) and KNN (k nearest neighbor)
are use which characterize the bug. Subsequent to applying
the classifier, bug will characterized.

2. NB CLASSIFIER

The Naive Bayes Classifier technique is based on
the so-called Bayesian theorem and is particularly suited
when the dimensionality of the inputs is high. Despite its
simplicity, Naive Bayes can often outperform more
sophisticated classification methods.

To demonstrate the concept of Naive Bayes
Classification, consider the example displayed in the
illustration above. As indicated, the objects can be classified
as either GREEN or RED. Our task is to classify new cases
as they arrive, i.e., decide to which class label they belong,
based on the currently exiting objects.

Since there are twice as many GREEN objects as
RED, it is reasonable to believe that a new case (which hasn't
been observed yet) is twice as likely to have membership
GREEN rather than RED. In the Bayesian analysis, this
belief is known as the prior probability. Prior probabilities
are based on previous experience, in this case the percentage
of GREEN and RED objects, and often used to predict
outcomes before they actually happen.

Copy Right to GARPH

Page 47

International Journal of Advanced Innovative Technology

in Engineering (IJAITE), Vol. 1, Issue 4, July-2016

ISSN: 2455-6491

Thus, we can write:

MNummber af GREEN chjscts
Tatal number of abjects

MNumber af RED ahjecis

Taial number of objects

Friar prabability for GREEN =«

FPrior probability for RED o

2.1 Plan (Rule)- based Classifiers:

In standard based classifiers we choose the word
plans which are well while in transit to be related to the
particular classes. We construct a course of action of
standards, in which the left-hand side identifies with a word
plan, and the right-hand side looks at to a class name. These
rules are used for the inspirations driving portrayal.

2.2 SVM Classifiers:

SVM Classifiers try to distribute data space with the
usage of straight or non-direct frameworks between the
particular classes. The key in such classifiers is to choose as
far as possible between the unmistakable classes and use
them for the purposes behind request.

2.3 Neural Network Classifiers:

Neural frameworks are used as a part of a wide
combination of regions for the inspirations driving gathering.
As to substance data, the principal contrast for neural
framework classifiers is to modify these classifiers with the
usage of word parts. We observe that neural framework
classifiers are related to SVM classifiers; without a doubt,
they both are in the order of discriminative classifiers, which
are on the other hand with the generative classifiers [102].
Bayesian (Generative) Classifiers: In Bayesian classifiers
(moreover called generative classifiers), we attempt to amass
a probabilistic classifier in perspective of showing the
essential word highlights in different classes. The thinking is
then to request content considering the back probability of
the reports having a spot with the particular classes on the
reason of the word closeness in the records.

2.4 Different Classifiers:

All classifiers can be conformed to the example of
substance data. A part of substitute classifiers consolidate
nearest neighbor classifiers, and genetic figuring based
classifiers. We will look at some of these particular
classifiers in some unobtrusive component and their use for
the occurrence of substance data. The area of substance
grouping is inconceivable to the point that it is hard to cover
all the various counts in inconspicuous component in a lone
segment. In this way, we will likely give the peruser an audit
of the most basic frameworks, moreover the pointers to the
differing assortments of these procedures. Highlight decision
is a basic issue for substance course of action. In highlight
determination, we try to choose the components which are
most huge to the request method. This is in light of the fact
that a part of the words are significantly more obligated to be
identified with the class movement than others. Hence, a
wide grouping of procedures have been proposed in the
written work with a particular finished objective to choose
the most fundamental components with the final objective of
plan. These consolidate measures, for instance, the gini-list
or the entropy, which choose the level of which the proximity

of a particular component skews the class allotment in the
basic data. We will moreover inspect the particular segment
determination methods which are routinely used for
substance request.

3. LITERATURE SURVEY

1. Towards Effective Bug Triage with Software Data
Reduction Techniques.[1]

In this paper a bug document (a typical programming storage
facility, for securing purposes of enthusiasm of bugs), expect
a fundamental part in supervising programming bugs.
Programming bugs are unavoidable and changing bugs is
exorbitant in programming change. Programming
associations spend more than 45 percent of cost in settling
bugs. Broad programming wanders pass on bug vaults
(furthermore called bug taking after structures) to support
information collection and to help creators to handle bugs,. In
a bug storage facility, a bug is kept up as a bug report, which
records the printed delineation of impersonating the bug and
updates as demonstrated by the status of bug adjusting. A
bug store gives a data stage to reinforce various sorts of
endeavors on bugs, e.g., inadequacy desire, bug restriction,
and resuscitated bug examination. In this paper, bug reports
in a bug storage facility are called bug data.

2 “Who should fix this bug?”[5]

In this paper they propose open bug store to which both
creators and customers can report bugs. The reports that
appear in this storage facility must be triaged to make sense
of whether the report is one which requires thought and if it
is, which architect will be consigned the commitment of
deciding the report. Endless open source change sare agitated
by the rate at which new bug reports appear in the bug
document. In this paper, we display a semi-robotized
approach proposed to straightforwardness one a player in this
methodology, the errand of reports to an originator. Our
philosophy applies a machine learning figuring to the open
bug vault to take in the sorts of reports each designer decides.
Right when another report arrives, the classifier made by the
machine learning technique suggests somewhat number of
fashioners appropriate to decide the report. With this
philosophy, we have accomplished precision levels of 57%
and 64% on the Eclipse and Firefox headway expands
separately

3. Finding bugs in web applications using dynamic test
generation and explicit-state model checking.[3]

In this paper they propose DYNAMIC test time instruments,
for instance, DART , Cute, and EXE , produce tests by
executing an application on strong data qualities, and a short
time later making additional information qualities by
comprehending run of the mill objectives got from honed
control stream ways. To date, such strategies have not been
practical in the space of Web applications, which pose novel
challenges as a result of the dynamism of the programming

Copy Right to GARPH

Page 48

International Journal of Advanced Innovative Technology

in Engineering (IJAITE), Vol. 1, Issue 4, July-2016

tongues, the use of comprehended information parameters,
their use of relentless state, and their flighty case of customer
association. This paper extends component test period to the
space of web applications that dynamically make web
(HTML) pages in the midst of execution, which are normally
shown to the customer in a project.

4. Towards graphical models for content preparing. [9]

In this paper, they propose the concept of distance graph
representations of text data. Such representations preserve
information about the relative ordering and distance between
the words in the graphs, and provide a much richer
representation in terms of sentence structure of the
underlying data. Recent advances in graph mining and
hardware capabilities of modern computers enable us to
process more complex representations of text. We will see
that such an approach has clear advantages from a qualitative
perspective. This approach enables knowledge discovery
from text which is not possible with the use of a pure vector-
space representation, because it loses much less information
about the ordering of the underlying words. Furthermore, this
representation does not require the development of new
mining and management techniques.

5. Bug Tracking and Reliability Assessment System
(BTRAS).[10]

In this paper they propose comprehensive classification
criteria to review the available tools and propose a new tool
named Bug Tracking and Reliability Assessment System
(BTRAS) for the bug tracking/reporting and reliability
assessment. BTRAS helps in reporting the bug, assigning the
bug to the developer for fixing, monitoring the progress of
bug fixing by various graphical/charting facility and status
updates, providing reliability bug prediction and bug
complexity measurements, and distributing fixes to
users/developers.

6. Reducing the effort of bug report triage [11]

In this paper they propose cooperation amidst architect and
customer. In open-source wanders, bug taking after systems
are a basic bit of how gatherings, (for instance, the ECLIPSE
and MOZILLA bunches) interface with their customer
bunches. As a result, customers can be incorporated into the
bug adjusting process: they show the primary bug reports and
additionally share in talks of how to settle bugs.
Subsequently they settle on decisions about the future
heading of a thing. To a sweeping degree, bug taking after
systems serve as the medium through which originators and
customers associate and grant. In any case, grinding develops
when settling bugs: engineers get disturbed and energetic
over divided bug reports and customers are frustrated when
their bugs are not instantly changed.

7. CLUBAS: An Algorithm and Java Based Tool for
Software Bug Classification Using Bug Attributes
Similarities [6]

In this paper, a product bug characterization calculation,

ISSN: 2455-6491

CLUBAS (Classification of Software Bugs Using Bug
Attribute Similarity) is exhibited. CLUBAS is a half breed
calculation, and is planned by utilizing content bunching,
continuous term figuring’s and taxonomic terms mapping
methods. The calculation CLUBAS is a case of arrangement
utilizing grouping strategy. The proposed calculation works
in three noteworthy strides, in the initial step content bunches
are made utilizing programming bug literary qualities
information and took after by the second step in which group
marks are produced utilizing name incitement for every
bunch, and in the third step, the group names are mapped
against the bug taxonomic terms to recognize the proper
classes of the bug groups. The group names are created
utilizing successive and significant terms present in the bug
characteristics, for the bugs having a place with the bug
bunches. The outlined calculation is assessed utilizing the
execution parameters F-measures and precision. These
parameters are contrasted and the standard order procedures
like Naive Bayes, Naive Bayes Multinomial, J48, Support
Vector Machine and Wake’s characterization utilizing
bunching calculations. A GUI (Graphical User Interface)
based instrument is additionally created in java for the
execution of CLUBAS calculation.

8. Bug Triage with Bug Data Reduction.[8]

The paper is altogether dedicated to taking after the bugs that
are hereby rise. The director keeps up the master bits of
knowledge regarding the bugs id, bugs sort, bugs depiction,
bugs earnestness, bugs status, customer purposes of
premium. The head too has the ability to update the master
purposes of enthusiasm of earnestness level, status level, etc.
The supervisor incorporates the customers and doles out
them commitment of completing the paper. Finally on
examining the paper doled out to the particular customer, the
executive can track the bugs, and it is actually added to the
tables containing the bugs, in response to popular demand of
reality and status. The supervisor can know the information
in judgment the diverse paper's consigned to various
customers, their bug taking after status, and their delineation
et cetera as reports every so often. The paper completely uses
the secured strategy for taking after the structure by realizing
and joining the Server side scripting. The chief can now
incorporate the endeavor modules, wander delineations et
cetera. He too incorporates the earnestness level, its status et
cetera.

9. Characterization and prediction of bug report [18]

The late improvements in variable and highlight
determination have tended to the issue from the down to
earth perspective of enhancing the execution of indicators.
They have met the test of working on info spaces of a few
thousand variables. Refined wrapper or implanted techniques
enhance indicator execution contrasted with less difficult
variable positioning strategies like connection strategies,
however the changes are not generally noteworthy: spaces
with expansive quantities of information variables experience
the ill effects of the scourge of dimensionality and
multivariate strategies may over fit the information. For a
few areas, applying initial a technique for programmed

Copy Right to GARPH

Page 49

International Journal of Advanced Innovative Technology

in Engineering (IJAITE), Vol. 1, Issue 4, July-2016

highlight development yields enhanced execution and a more
minimal arrangement of elements. The strategies proposed in
this unique issue have been tried on a wide assortment of
information sets (see Table 1), which restrains the likelihood
of making correlations crosswise over papers. Further work
incorporates the association of a benchmark. The
methodologies are exceptionally assorted and persuaded by
different hypothetical contentions, yet a binding together
hypothetical system is deficient. Due to these deficiencies, it
is critical when beginning with another issue to have a couple
gauge execution values. To that end, we prescribe utilizing a
direct indicator of your decision (e.g. a straight SVM) and
select variables in two substitute courses: (1) with a variable
positioning technique utilizing a connection coefficient or
shared data; (2) with a settled subset choice strategy
performing forward or in reverse determination or with
multiplicative upgrades. Further not far off, associations
should be made between the issues of variable and highlight
choice and those of test configuration and dynamic learning,
with an end goal to move far from observational information
toward exploratory information, and to address issues of
causality derivation.

4. PROBLEM STATEMENT

1. In existing system, a Bug sorting System is planned
within which 2 major knowledge set square measure used
and data reduction techniques square measure planned
with the assistance of instance choice and feature choice.

2. Instance choice and feature choice square measure used
for knowledge reduction and higher quality of Bug. In
existing system, no text classification rule is planned to
avoid manual classification that is incredibly time
overwhelming.

3. Thus to avoid such state of affairs we have a tendency to
extend our base paper practicality with automatic
classification of Bugs mistreatment hybrid combination of
KNN & NB classifier system.

4. In existing system nothing is incredibly abundant
mentioned concerning automatic classification which may
really scale back time in bug sorting system.

5. The potency of the present system is any extended by
mistreatment Hybrid Algorithms.

6. PROPOSED WORK

The main aim of proposed system is to classify &
enlist the bugs efficiently into different categories using
hybrid combination of KNN & Naive bayes algorithm so that
the detected bugs can be efficiently solved by concerned
user. Also, an approach for efficient automatic bug triage &
classification is undertaken in proposed system.

Generic Strategy for Classifying a Text Document

The main steps involved are

i) Document pre-processing,

ii) Feature extraction / selection

iii) Model selection

iv) Training and testing the classifier

ISSN: 2455-6491

We present the problem of data reduction for bug
triage. This problem aims to augment the data set of bug
triage in two aspects, namely
a) To simultaneously reduce the scales of the bug dimension
and the word dimension.

b) To improve the accuracy of bug triage.

We propose a combination approach to addressing the
problem of data reduction. This can be viewed as an
application of instance selection and feature selection in bug
repositories. We build a combination of NB and KNN
classifier to predict the class of the bug. These two
techniques are never use in combine form. So, we are using
this combination for increasing the efficiency & accuracy.

[Generate Bug Report |

L3

[Preprocess Bug Details J

L
Removal of Unwanted Description from 8ug
Details

8 4
[Perform Word Count Freguency using KNN |

T L3
Perform Naive Frequency Generation using NB
classifier

l Classify Bug l

T

\ Bug Allotment ‘

T

[Close Bug |

Figure 1: Bug Preprocessing & Classification

Figure 1 shows flowchart of Bug Preprocessing &
Classification where bug reports taken from open sources are
feed into the system for bug preprocessing. Bug
preprocessing removes unwanted symbols, stop words,
digits, etc from the bug reports through the proposed
algorithm. After Preprocessing, analysis of preprocessed bug
report using two different algorithms like KNN & Naive
Bayes Classifier. And according to this analysis, efficient
bug classification & allotment is done & status of concern
bugs submitted.

Algorithm:
Algorithm Preprocess (Data D)

Step 1: Read Data into Array

Step 2: Remove All Stop words
Yi=0]|¢n#stop(i)

Step 3: Remove Redundancy from Array
2i=0]|¢n+repeat(i)

Step 4: Remove all Special Symbol and digits.

Step 5: Write back

Algorithm Hybrid Classification (Data D)
Step 1: Read Data into Array
Step 2: Call Preprocess (D)

Copy Right to GARPH

Page 50

International Journal of Advanced Innovative Technology

in Engineering (IJAITE), Vol. 1, Issue 4, July-2016

Step 3: Calculate Word count
Yi=0|¢i=i+1ifa[i] € finalli]
Step 4: Calculate Frequency
TF = number of occurrences / total words
Step 5: Calculate Normalized TF
NTF = sum of TF / number of classes
Step 6: Generate Decision Matrix
Step 7: Calculate Final max class value and classify.

* Bug Class 1
. Bug CJass 2
Bug feport] = Bug Classifier

(KNNangNg) [el
—_— 4 Buz Class 4

pr—
Bug Dataset Sgeatures | Y Bug Class N1
. Bug CassN

Figure 2: System Architecture

Figure 2 shows system architecture of proposed
system where bug reports are feed to the hybrid combination
of KNN & Naive bayes Classifier. And according to the
classification results concern bug is categorized & enlisted
into the appropriate bug classes. Hybrid combination of KNN
& Naive bayes Classifier also uses bug dataset signature at
the time of bug classification.

7. OVERVIEW OF DATASET

We have used FINDBUGS Categories as our bug
dataset for unstructured bug categories.

Some of Bug categories are:

7.1 Correctness bug

Probable bug - an apparent coding mistake resulting
in code that was probably not what the developer intended.
We strive for a low false positive rate.

7.2 Bad Practice

It is the code which has violations of recommended
and essential coding practice. Examples include hash code
and equals problems, clone able idiom, dropped exceptions,
serializable problems, and misuse of finalize. We strive to
make this analysis accurate, although some groups may not
care about some of the bad practices.

7.3 Dodgy Code

It is the code that is confusing, anomalous, or
written in a way that leads itself to errors. Examples include
dead local stores, switch fall through, unconfirmed casts, and

ISSN: 2455-6491

redundant null check of value known to be null. More false
positives accepted. In previous versions of FindBugs, this
category was known as Style.

7.4 Malicious code vulnerability

It is the code that is vulnerable to malicious code
like Trojan or which can send data to another application.
Such code comes under this class.

7.5 Performance

It is the code that degrades the performance of the
system by some looping or function calling. It mainly
includes boxing and unboxing primitives of a program.

7.6 Security

Code that is vulnerable to security attacks. For Ex:
Hardcoded password that is always constant in database or
constant OTP for all users.

7.7 Multithreaded correctness

Code related to concurrency control and read write
permissions to user in the system. It mainly includes
multithreading program ambiguity. For EX: In JAVA
multiple run methods cause this kind of issue.

8. EXPERIMENTAL RESULTS

The proposed system is implemented in Java and
MySQL. The dataset is provided with 9 classes from
FindBugs 2.0 that is openly available on GitHub and
SourceForge. The algorithm used for classification is hybrid
combination of KNN and Naive Bayes and we also provide
comparative study for both this algorithms in terms of Bug
Triage System.Here, different screenshots of GUI are shown
along with their detail descriptions and navigations from one
page to another.

BUG CLASSIFICATION SYSTEM

admin@bug.com

Figure 3: Login Page

Copy Right to GARPH

Page 51

International Journal of Advanced Innovative Technology

Figure 4: Main Page

USER REGISTRATION

Name

Password

User Type

User Class Bad Practice

e N AP ¢ .

Figure 5: User Registration

ADD NEW CLASS

in Engineering (IJAITE), Vol. 1, Issue 4, July-2016

o

ISSN: 2455-6491

Figure 6: Class Insertion

UPDATE CLASS DETAILS

CIass Manw

Aad Keywords

SUBMIT BUG DETAILS

H--.a'-i*

Sl hg Tk | Btae cocion | et

Ry romean RGO ST
L0 0 Pets It 1em CONGATS] W B0 oot TN OPRSIRI T3 R0
v et T T SELICTRIL PRAT SIETTED v 0 sepoive et An
SATIELECTEO oot gdhn. i (oot ad 0 as O i ol v)

B2 Soow

PTRATRE 100 1 CITTR RPEER;
oS\ g foe b

Vang—pr—wsy

Figure 9: Bug Information Page

Copy Right to GARPH

Page 52

International Journal of Advanced Innovative Technology

l Result Analysis

Figure 10: Result Analysis

Bug Allotment

Bag Class Correctnoss

Bug Title Bitwise Operation Falled

Bag Allot to wser

Figure 11: Bug Allotment

Wordcount chart
ne
Ko |
b8
ne
e
X0
S e
i
e
0
L4
LR
28
g —
Classer
= 030 Peaetiin 8 Comoctnass o Dodgy Code | Dipatmartyl i Mabhtoun Code Winwratitty

in Engineering (IJAITE), Vol. 1, Issue 4, July-2016

ISSN: 2455-6491

EREy——

TF chart !
0se
0oe
nsy
ooe
i oes
094
0%
02
oo

= Rateg - Raming
Caseas

® Comeeiass w9a2 Prackee mExpsimentsd | Dodgy Cods mimamatienszaton

Malcious Code VWilnarati bty

Figure 13: Term Frequency (TF) Chart

For the result analysis, parameter based comparative analysis
of existing system with proposes system is done. For this
purpose, three versions of C4.5 algorithms are considered &
their observations are taken from previous work and then
compared with the proposed algorithms.

Table of analysis for proposed system

Dataset | Algorith Prec | Recall F1 Accur
m ision acy
C45 849 | 949 89.62 | 81%
%
AdaBoost | 85.0 | 88.6 86.76 | 77%
C45 %
Eclipse | resamplin
g
AdaBoost | 85.3 | 88.3 85.8% | 75%
C45
reweighti
ng
KNN 72 84 77.5% | 73%
FindBu | NB 80 88 83.8% | 84%
gs Hybrid 92 96 93.9% | 95%

Figure 12: Word count Chart

Copy Right to GARPH

Table 1: Parameter based comparative result analysis for
proposed system

Bug triage and classification systems can be effectively
analyzed by using precision, recall & F1 measures
parameters which are follows.

Precision = # of appropriate recommendations / # of
recommendations made 1)

Recall = # of appropriate recommendations / # of possibly
relevant developers (2)

F1 measure = 2*Recall*Precision / Recall + Precision

©)

Page 53

International Journal of Advanced Innovative Technology

in Engineering (IJAITE), Vol. 1, Issue 4, July-2016

ISSN: 2455-6491

120
100
o 80
[=T+]
8
§ 60 M Precision
& 40 M Recall
F1
20
M Accuracy
0
QT P za2D
Sww< 3
S O -
Algorithms

Figure 14: Comparative result analysis of different algorithm
on bug triage system

Figure 14 and table 1 shows parameter based
Comparative analysis of 3 different algorithms from previous
system against 3 proposed algorithms on bug triage system.
The table contains the results of experimental execution of
system designed by hybrid combination of KNN & NB
Classifier. The parameters considered for concern result
analysis are precision, recall, F1 and accuracy. ECLIPSE and
Find bugs are the dataset of previous work and proposed
work, respectively. From the Figure 6.14 and table 6.1, it is
concluded that the proposed algorithms have better results as
compared to the existing algorithms of previous work.

9. CONCLUSION

Existing bug trailing frameworks don't successfully

aggregate the greater part of the learning required by
engineers. While not this data engineers can't resolve bugs in
an exceedingly convenient manner and afterward we tend to
trust that upgrades to the technique issue trailing frameworks
gather information are required. We condensed criteria that
are utilized in electronic gear bug trailing frameworks. Such
criteria for the most part doesn't give adequate winds up in
depicting bug. In this way, we tend to anticipate an enhanced
arrangement of criteria which will give significantly all the
more fulfilling determination to the present framework. This
work are regularly crucial to the planners of the more
extended term bug and abscond trailing frameworks. They
should get a handle on significance of decision criteria for
depicting bug, as an aftereffect of a well outline bug are
simpler to be follow and illuminated.
In Future, the potency of the projected system is tested on
completely different completely different dataset for
checking the potency of the algorithms on different systems.
We will conjointly merge some additional rules to improvise
the potency of the projected Hybrid algorithm.

10. REFERENCES

[1] JifengXuan, He Jiang, Yan Hu, ZhileiRen, WeiginZou,
ZhongxuanlLuo, and Xindong Wu, —Towards Effective Bug
Triage with Software Data Reduction Techniques,| IEEE
Transactions, Volume 27, NO. 1, JANUARY 2015.

[2] Anjali, Sandeep Kumar Singh, —Bug Triaging: Profile
Oriented Developer Recommendationl, International Journal
of Innovative Research in Advanced Engineering (IJIRAE)
ISSN: 2349-2163, Volume 2, Issue 1, January 2015.

[3] S. Artzi, A. Kie_zun, J. Dolby, F. Tip, D. Dig, A.
Paradkar, and M. D.Ernst, “Finding bugs in web applications
using dynamic test generation and explicit-state model
checking,” IEEE Softw., vol. 36, no. 4, pp. 474-494,
Jul./Aug. 2010.

[4] PankajRana, Asst. Prof. Saurabh Sharma “Review of Bug
Serverity Prediction Techniques Using Data Mining”Volume
5, Issue 6,June2015 .

[5] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix
this bug?” in Proc. 28th Int. Conf. Softw. Eng., May 2006,
pp. 361-370.

[6] Naresh Kumar Nagwani, ShrishVerma, “CLUBAS: An
Algorithm and Java Based Tool for Software Bug
Classification Using Bug Attributes Similarities,” Journal of
Software Engineering and Applications, 2012, 5, 436-
447,May 10th, 2012.

[7] P. S. Bishnu and V. Bhattacherjee, “Software fault
prediction using quad tree-based k-means clustering
algorithm,” IEEE Trans. Knowl. Data Eng., vol. 24, no. 6,
pp. 1146-1150, Jun. 2012.

[8] PankajGakare, YogitaDhole,SaraAnjum, —Bug Triage
with Bug Data Reductionl, International Research Journal
ofEngineering and Technology (IRJET) e-ISSN: 2395 -
0056,Volume 02 Issue 04, July 2015.

[9] C. C. Aggarwal and P. Zhao, “Towards graphical models
for text processing,” Knowl. Inform. Syst., vol. 36, no. 1, pp.
1-21, 2013.

[10] D. Cubranic and G. C. Murphy, “Automatic bug triage
using text categorization,” in Proc. 16th Int. Conf. Softw.
Eng. Knowl. Eng., Jun. 2004, pp. 92-97.

[11] J. Anvik and G. C. Murphy, —Reducing the effort of
bug report triage: Recommenders for development-oriented
decisions,| ACM Trans. Softw. Eng. Methodol., vol. 20, no.
3, pp. 10:1-10:35, Aug. 2011.

[12] A. K. Farahat, A. Ghodsi, M. S. Kamel, “Efficient
greedy feature selection for unsupervised learning,” Knowl.
Inform. Syst., vol. 35, no. 2, pp. 285-310, May 2013.

[13] K. Gao, T. M. Khoshgoftaar, and A. Napolitano,
“Impact of data sampling on stability of feature selection for
software measurement data,” in Proc. 23rd IEEE Int. Conf.
Tools Artif. Intell., Nov. 2011, pp. 1004-1011.

[14] J. A. Olvera-Lopez, J. A.Carrasco-Ochoa, J. F.
Martmez-Trinidad, and J. Kittler, “A review of instance
selection methods,” Artif. Intell. Rev., vol. 34, no. 2, pp.
133-143, 2010.

[15] C. Sun, D. Lo, S. C. Khoo, and J. Jiang, “Towards more
accurate retrieval of duplicate bug reports,” in Proc. 26th
IEEE/ACM Int. Conf. Automated Softw. Eng., 2011, pp.
253-262.

[16] G.Jeong S. Kim, and T. Zimmermann, —Improving bug
triage with bug tossing graphsl, in Proceedings of Seventh

Copy Right to GARPH

Page 54

International Journal of Advanced Innovative Technology
in Engineering (IJAITE), Vol. 1, Issue 4, July-2016

joint meeting ofEuropean Software Engineering Conference
& ACM SIGSOFT symposium on Foundations of software
engineering, ser. ESEC/FSE ’09. New York, NY, USA:
ACM, pp. 111-120, 2009.

[17] R. S. Pressman, —Software engineering: A
Practitioner’s Approachl, 7th ed. New York, NY, USA:
McGraw-Hill, 2010.

[18] S. Shivaji, E. J. Whitehead, Jr., R. Akella, and S. Kim,
“Reducing features to improve code change based bug
prediction,” IEEE Trans. Soft. Eng., vol. 39, no. 4, pp. 552—
569, Apr. 2013

[19] T. Zimmermann, N. Nagappan, P. J. Guo, and B.
Murphy, “Characterizing and predicting which bugs get
reopened,” in Proc. 34" Int. Conf. Softw. Eng., Jun. 2012,
pp. 1074-1083.

[20] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A.
Schr€oter, and C. Weiss, “What makes a good bug report?”
IEEE Trans. Softw. Eng., vol. 36, no. 5, pp. 618-643, Oct.
2010.

[21] Y. Fu, X. Zhu, and B. Li, “A survey on instance
selection for active learning,” Knowl. Inform. Syst., vol. 35,
no. 2, pp. 249-283, 2013.

[22] 1. Guyon and A. Elisseeff, “An introduction to variable
and feature selection,” J. Mach. Learn. Res., vol. 3, pp.
1157-1182, 2003.

[23] A. Srisawat, T. Phienthrakul, and B. Kijsirikul, “SV-
KNNC: An algorithm for improving the efficiency of k-
nearest neighbor,” in Proc. 9™ Pacific Rim Int. Conf. Artif.
Intell., Aug. 2006, pp. 975-979.

[24] J. Tang, J. Zhang, R. Jin, Z. Yang, K. Cali, L. Zhang, and
Z. Su, “Topic level expertise search over heterogeneous
networks,” Mach. Learn., vol. 82, no. 2, pp. 211-237, Feb.
2011.

[25] I. H. Witten, E. Frank, and M. A. Hall, Data Mining:
Practical Machine Learning Tools and Techniques, 3" ed.
Burlington, MA, USA: Morgan Kaufmann, 2011.

[26] D. R. Wilson and T. R. Martinez, “Reduction techniques
for instance-based learning algorithms,” Mach. Learn., vol.
38,pp. 257-286, 2000.

[27] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An
approach to detecting duplicate bug reports using natural
language and execution information,” in Proc. 30™ Int. Conf.
Softw. Eng., May 2008,

pp. 461-470.

[28] J. Xuan, H. Jiang, Z. Ren, and Z. Luo, “Solving the
large scale next release problem with a backbone based
multilevel algorithm,” IEEE Trans. Softw. Eng., vol. 38, no.
5, pp. 1195-1212, Sept./Oct.

2012.

[29] J. Xuan, H. Jiang, Z. Ren, J. Yan, and Z. Luo,
“Automatic bug triage using semi-Supervised text
classification,” in Proc. 22" Int. Conf. Softw. Eng. Knowl.
Eng., Jul. 2010, pp. 209-214.

[30] J. Xuan, H. Jiang, Z. Ren, and W. Zou, “Developer
prioritization in bug repositories,” in Proc. 34th Int. Conf.
Softw. Eng., 2012, pp. 25-35.

ISSN: 2455-6491

Copy Right to GARPH

Page 55

