
International Journal of Advanced Innovative Technology

in Engineering (IJAITE), Vol. 1, Issue 4, July-2016 ISSN: 2455-6491

Copy Right to GARPH Page 47

“AUTOMATED BUG CLASSIFICATION AND TRAIGE SYSTEM USING HYBRID

ALGORITHM BASED ON DATA MINING”

1
RAHUL V. BAMBODKAR

M. Tech Student, Department of Computer Science & Engineering, REC, Bhopal, India

rahulbambodkar1@gmail.com

2
PROF. SHIVENDRA DUBEY

Assistant Professor, Department of Computer Science & Engineering, REC, Bhopal, India

shivendradubey5@gmail.com

ABSTRACT: Flaw is only a blunder or bug which produces unforeseen and mistaken result. In Companies all product tasks are

influenced by programming Flaws (bug).Every day new bugs are created and engineer needs to alter that bug or imperfection.

Programming Company spends heaps of cash to alter them. Settling bug is hard so we will diminish this by utilizing some

technique. Every time when bug is created we have to arrange that bug and for that reason we require classifier. Classifier is the

procedure by which we can arrange the bug with the goal that we decide at which class that bug is have a place. In this paper we

are utilizing two procedures NB (naive bayes) and KNN (k-nearest neighbour) for arrangement. NB depends on recurrence and

KNN depends on word check. After the arrangement the bug is grouped and administrator can allocate them to the designer to

alter. In this paper we likewise present element choice and example choice for diminishing database. Bug storehouse is the

database which is utilized to store bug points of interest. In this paper mix of NB and KNN classifier is utilized which is more

effective and take less time to arrange the bug so that administrator can allocate a legitimate bug of specific class to the ideal

designer AND the bug will settle effortlessly. In the past paper manual triaging framework is utilized which is not effective and

taking an excessive amount of time. In this paper we enhancing imperfection triage furthermore decreasing the database by

utilizing these two systems.

Keywords: bug triage, bug data reduction, bug classification technique.

1. INTRODUCTION

The vast majority of the organizations burn through

45% of expense in managing the product bugs. This bug

squander the season of engineer who build up the venture. In

this paper we enhance the imperfection triage by utilizing

order strategy furthermore lessening the database .the

information which is not valuable for altering the bug we will

expel it. This all procedure is goes under the preprocessing

where all the undesirable information is expelled and

administrator get legitimate information which portray the

bug subtle element. For putting away this bug point of

interest we require database this is called bug archive.

Open source programming advancements fuse an open bug

store that permits both designers and clients to post issues

experienced with the product, propose conceivable

improvements, and remark after existing bug reports. One

potential point of interest of an open bug vault is that it might

permit more bugs to be recognized and fathomed, enhancing

the nature of the product created [12].

For overseeing programming bugs bug storehouse

or bug settling assumes an essential part. Vast of

programming which are open source ventures have an open

bug archive which permits designers and also clients to

submit issues or surrenders in the product that propose

conceivable arrangements and remark on existing bug

reports. The quantity of customary happening bugs for open

source huge scale programming tasks is so much expansive

that makes the triaging procedure exceptionally troublesome

and testing .For altering programming bugs a large portion of

programming organizations pays a great deal . The

substantial scale and the low quality are primary two

difficulties which are connected with bug information that

may influence the successful utilization of bug archives in

programming advancement tasks. Bug is kept up as a bug

report in a bug store that records the recreating bug in literary

frame and upgrades as per the status of bug altering [1].

This paper presents Preprocessing and

Classification. Preprocessing is the procedure where

undesirable information will evacuate and we get the helpful

information for grouping and For Classification this two

strategies NB (gullible base) and KNN (k nearest neighbor)

are use which characterize the bug. Subsequent to applying

the classifier, bug will characterized.

2. NB CLASSIFIER

The Naive Bayes Classifier technique is based on

the so-called Bayesian theorem and is particularly suited

when the dimensionality of the inputs is high. Despite its

simplicity, Naive Bayes can often outperform more

sophisticated classification methods.

To demonstrate the concept of Naïve Bayes

Classification, consider the example displayed in the

illustration above. As indicated, the objects can be classified

as either GREEN or RED. Our task is to classify new cases

as they arrive, i.e., decide to which class label they belong,

based on the currently exiting objects.

Since there are twice as many GREEN objects as

RED, it is reasonable to believe that a new case (which hasn't

been observed yet) is twice as likely to have membership

GREEN rather than RED. In the Bayesian analysis, this

belief is known as the prior probability. Prior probabilities

are based on previous experience, in this case the percentage

of GREEN and RED objects, and often used to predict

outcomes before they actually happen.

International Journal of Advanced Innovative Technology

in Engineering (IJAITE), Vol. 1, Issue 4, July-2016 ISSN: 2455-6491

Copy Right to GARPH Page 48

Thus, we can write:

2.1 Plan (Rule)- based Classifiers:
In standard based classifiers we choose the word

plans which are well while in transit to be related to the

particular classes. We construct a course of action of

standards, in which the left-hand side identifies with a word

plan, and the right-hand side looks at to a class name. These

rules are used for the inspirations driving portrayal.

2.2 SVM Classifiers:
SVM Classifiers try to distribute data space with the

usage of straight or non-direct frameworks between the

particular classes. The key in such classifiers is to choose as

far as possible between the unmistakable classes and use

them for the purposes behind request.

2.3 Neural Network Classifiers:

Neural frameworks are used as a part of a wide

combination of regions for the inspirations driving gathering.

As to substance data, the principal contrast for neural

framework classifiers is to modify these classifiers with the

usage of word parts. We observe that neural framework

classifiers are related to SVM classifiers; without a doubt,

they both are in the order of discriminative classifiers, which

are on the other hand with the generative classifiers [102].

Bayesian (Generative) Classifiers: In Bayesian classifiers

(moreover called generative classifiers), we attempt to amass

a probabilistic classifier in perspective of showing the

essential word highlights in different classes. The thinking is

then to request content considering the back probability of

the reports having a spot with the particular classes on the

reason of the word closeness in the records.

2.4 Different Classifiers:
All classifiers can be conformed to the example of

substance data. A part of substitute classifiers consolidate

nearest neighbor classifiers, and genetic figuring based

classifiers. We will look at some of these particular

classifiers in some unobtrusive component and their use for

the occurrence of substance data. The area of substance

grouping is inconceivable to the point that it is hard to cover

all the various counts in inconspicuous component in a lone

segment. In this way, we will likely give the peruser an audit

of the most basic frameworks, moreover the pointers to the

differing assortments of these procedures. Highlight decision

is a basic issue for substance course of action. In highlight

determination, we try to choose the components which are

most huge to the request method. This is in light of the fact

that a part of the words are significantly more obligated to be

identified with the class movement than others. Hence, a

wide grouping of procedures have been proposed in the

written work with a particular finished objective to choose

the most fundamental components with the final objective of

plan. These consolidate measures, for instance, the gini-list

or the entropy, which choose the level of which the proximity

of a particular component skews the class allotment in the

basic data. We will moreover inspect the particular segment

determination methods which are routinely used for

substance request.

3. LITERATURE SURVEY

1. Towards Effective Bug Triage with Software Data

Reduction Techniques.[1]

In this paper a bug document (a typical programming storage

facility, for securing purposes of enthusiasm of bugs), expect

a fundamental part in supervising programming bugs.

Programming bugs are unavoidable and changing bugs is

exorbitant in programming change. Programming

associations spend more than 45 percent of cost in settling

bugs. Broad programming wanders pass on bug vaults

(furthermore called bug taking after structures) to support

information collection and to help creators to handle bugs,. In

a bug storage facility, a bug is kept up as a bug report, which

records the printed delineation of impersonating the bug and

updates as demonstrated by the status of bug adjusting. A

bug store gives a data stage to reinforce various sorts of

endeavors on bugs, e.g., inadequacy desire, bug restriction,

and resuscitated bug examination. In this paper, bug reports

in a bug storage facility are called bug data.

.

2 “Who should fix this bug?”[5]

In this paper they propose open bug store to which both

creators and customers can report bugs. The reports that

appear in this storage facility must be triaged to make sense

of whether the report is one which requires thought and if it

is, which architect will be consigned the commitment of

deciding the report. Endless open source change sare agitated

by the rate at which new bug reports appear in the bug

document. In this paper, we display a semi-robotized

approach proposed to straightforwardness one a player in this

methodology, the errand of reports to an originator. Our

philosophy applies a machine learning figuring to the open

bug vault to take in the sorts of reports each designer decides.

Right when another report arrives, the classifier made by the

machine learning technique suggests somewhat number of

fashioners appropriate to decide the report. With this

philosophy, we have accomplished precision levels of 57%

and 64% on the Eclipse and Firefox headway expands

separately

3. Finding bugs in web applications using dynamic test

generation and explicit-state model checking.[3]

In this paper they propose DYNAMIC test time instruments,

for instance, DART , Cute, and EXE , produce tests by

executing an application on strong data qualities, and a short

time later making additional information qualities by

comprehending run of the mill objectives got from honed

control stream ways. To date, such strategies have not been

practical in the space of Web applications, which pose novel

challenges as a result of the dynamism of the programming

International Journal of Advanced Innovative Technology

in Engineering (IJAITE), Vol. 1, Issue 4, July-2016 ISSN: 2455-6491

Copy Right to GARPH Page 49

tongues, the use of comprehended information parameters,

their use of relentless state, and their flighty case of customer

association. This paper extends component test period to the

space of web applications that dynamically make web

(HTML) pages in the midst of execution, which are normally

shown to the customer in a project.

4. Towards graphical models for content preparing. [9]

In this paper, they propose the concept of distance graph

representations of text data. Such representations preserve

information about the relative ordering and distance between

the words in the graphs, and provide a much richer

representation in terms of sentence structure of the

underlying data. Recent advances in graph mining and

hardware capabilities of modern computers enable us to

process more complex representations of text. We will see

that such an approach has clear advantages from a qualitative

perspective. This approach enables knowledge discovery

from text which is not possible with the use of a pure vector-

space representation, because it loses much less information

about the ordering of the underlying words. Furthermore, this

representation does not require the development of new

mining and management techniques.

5. Bug Tracking and Reliability Assessment System

(BTRAS).[10]

In this paper they propose comprehensive classification

criteria to review the available tools and propose a new tool

named Bug Tracking and Reliability Assessment System

(BTRAS) for the bug tracking/reporting and reliability

assessment. BTRAS helps in reporting the bug, assigning the

bug to the developer for fixing, monitoring the progress of

bug fixing by various graphical/charting facility and status

updates, providing reliability bug prediction and bug

complexity measurements, and distributing fixes to

users/developers.

6. Reducing the effort of bug report triage [11]

In this paper they propose cooperation amidst architect and

customer. In open-source wanders, bug taking after systems

are a basic bit of how gatherings, (for instance, the ECLIPSE

and MOZILLA bunches) interface with their customer

bunches. As a result, customers can be incorporated into the

bug adjusting process: they show the primary bug reports and

additionally share in talks of how to settle bugs.

Subsequently they settle on decisions about the future

heading of a thing. To a sweeping degree, bug taking after

systems serve as the medium through which originators and

customers associate and grant. In any case, grinding develops

when settling bugs: engineers get disturbed and energetic

over divided bug reports and customers are frustrated when

their bugs are not instantly changed.

7. CLUBAS: An Algorithm and Java Based Tool for

Software Bug Classification Using Bug Attributes

Similarities [6]

In this paper, a product bug characterization calculation,

CLUBAS (Classification of Software Bugs Using Bug

Attribute Similarity) is exhibited. CLUBAS is a half breed

calculation, and is planned by utilizing content bunching,

continuous term figuring’s and taxonomic terms mapping

methods. The calculation CLUBAS is a case of arrangement

utilizing grouping strategy. The proposed calculation works

in three noteworthy strides, in the initial step content bunches

are made utilizing programming bug literary qualities

information and took after by the second step in which group

marks are produced utilizing name incitement for every

bunch, and in the third step, the group names are mapped

against the bug taxonomic terms to recognize the proper

classes of the bug groups. The group names are created

utilizing successive and significant terms present in the bug

characteristics, for the bugs having a place with the bug

bunches. The outlined calculation is assessed utilizing the

execution parameters F-measures and precision. These

parameters are contrasted and the standard order procedures

like Naïve Bayes, Naïve Bayes Multinomial, J48, Support

Vector Machine and Wake’s characterization utilizing

bunching calculations. A GUI (Graphical User Interface)

based instrument is additionally created in java for the

execution of CLUBAS calculation.

8. Bug Triage with Bug Data Reduction.[8]

The paper is altogether dedicated to taking after the bugs that

are hereby rise. The director keeps up the master bits of

knowledge regarding the bugs id, bugs sort, bugs depiction,

bugs earnestness, bugs status, customer purposes of

premium. The head too has the ability to update the master

purposes of enthusiasm of earnestness level, status level, etc.

The supervisor incorporates the customers and doles out

them commitment of completing the paper. Finally on

examining the paper doled out to the particular customer, the

executive can track the bugs, and it is actually added to the

tables containing the bugs, in response to popular demand of

reality and status. The supervisor can know the information

in judgment the diverse paper's consigned to various

customers, their bug taking after status, and their delineation

et cetera as reports every so often. The paper completely uses

the secured strategy for taking after the structure by realizing

and joining the Server side scripting. The chief can now

incorporate the endeavor modules, wander delineations et

cetera. He too incorporates the earnestness level, its status et

cetera.

9. Characterization and prediction of bug report [18]

The late improvements in variable and highlight

determination have tended to the issue from the down to

earth perspective of enhancing the execution of indicators.

They have met the test of working on info spaces of a few

thousand variables. Refined wrapper or implanted techniques

enhance indicator execution contrasted with less difficult

variable positioning strategies like connection strategies,

however the changes are not generally noteworthy: spaces

with expansive quantities of information variables experience

the ill effects of the scourge of dimensionality and

multivariate strategies may over fit the information. For a

few areas, applying initial a technique for programmed

International Journal of Advanced Innovative Technology

in Engineering (IJAITE), Vol. 1, Issue 4, July-2016 ISSN: 2455-6491

Copy Right to GARPH Page 50

highlight development yields enhanced execution and a more

minimal arrangement of elements. The strategies proposed in

this unique issue have been tried on a wide assortment of

information sets (see Table 1), which restrains the likelihood

of making correlations crosswise over papers. Further work

incorporates the association of a benchmark. The

methodologies are exceptionally assorted and persuaded by

different hypothetical contentions, yet a binding together

hypothetical system is deficient. Due to these deficiencies, it

is critical when beginning with another issue to have a couple

gauge execution values. To that end, we prescribe utilizing a

direct indicator of your decision (e.g. a straight SVM) and

select variables in two substitute courses: (1) with a variable

positioning technique utilizing a connection coefficient or

shared data; (2) with a settled subset choice strategy

performing forward or in reverse determination or with

multiplicative upgrades. Further not far off, associations

should be made between the issues of variable and highlight

choice and those of test configuration and dynamic learning,

with an end goal to move far from observational information

toward exploratory information, and to address issues of

causality derivation.

4. PROBLEM STATEMENT

1. In existing system, a Bug sorting System is planned

within which 2 major knowledge set square measure used

and data reduction techniques square measure planned

with the assistance of instance choice and feature choice.

2. Instance choice and feature choice square measure used

for knowledge reduction and higher quality of Bug. In

existing system, no text classification rule is planned to

avoid manual classification that is incredibly time

overwhelming.

3. Thus to avoid such state of affairs we have a tendency to

extend our base paper practicality with automatic

classification of Bugs mistreatment hybrid combination of

KNN & NB classifier system.

4. In existing system nothing is incredibly abundant

mentioned concerning automatic classification which may

really scale back time in bug sorting system.

5. The potency of the present system is any extended by

mistreatment Hybrid Algorithms.

6. PROPOSED WORK

The main aim of proposed system is to classify &

enlist the bugs efficiently into different categories using

hybrid combination of KNN & Naïve bayes algorithm so that

the detected bugs can be efficiently solved by concerned

user. Also, an approach for efficient automatic bug triage &

classification is undertaken in proposed system.

Generic Strategy for Classifying a Text Document

The main steps involved are

i) Document pre-processing,

ii) Feature extraction / selection

iii) Model selection

iv) Training and testing the classifier

We present the problem of data reduction for bug

triage. This problem aims to augment the data set of bug

triage in two aspects, namely

a) To simultaneously reduce the scales of the bug dimension

and the word dimension.

b) To improve the accuracy of bug triage.

We propose a combination approach to addressing the

problem of data reduction. This can be viewed as an

application of instance selection and feature selection in bug

repositories. We build a combination of NB and KNN

classifier to predict the class of the bug. These two

techniques are never use in combine form. So, we are using

this combination for increasing the efficiency & accuracy.

Figure 1: Bug Preprocessing & Classification

Figure 1 shows flowchart of Bug Preprocessing &

Classification where bug reports taken from open sources are

feed into the system for bug preprocessing. Bug

preprocessing removes unwanted symbols, stop words,

digits, etc from the bug reports through the proposed

algorithm. After Preprocessing, analysis of preprocessed bug

report using two different algorithms like KNN & Naïve

Bayes Classifier. And according to this analysis, efficient

bug classification & allotment is done & status of concern

bugs submitted.

Algorithm:

Algorithm Preprocess (Data D)

Step 1: Read Data into Array

Step 2: Remove All Stop words

Step 3: Remove Redundancy from Array

Step 4: Remove all Special Symbol and digits.

Step 5: Write back

Algorithm Hybrid Classification (Data D)

Step 1: Read Data into Array

Step 2: Call Preprocess (D)

International Journal of Advanced Innovative Technology

in Engineering (IJAITE), Vol. 1, Issue 4, July-2016 ISSN: 2455-6491

Copy Right to GARPH Page 51

Step 3: Calculate Word count

Step 4: Calculate Frequency

 TF = number of occurrences / total words

Step 5: Calculate Normalized TF

 NTF = sum of TF / number of classes

Step 6: Generate Decision Matrix

Step 7: Calculate Final max class value and classify.

Figure 2: System Architecture

Figure 2 shows system architecture of proposed

system where bug reports are feed to the hybrid combination

of KNN & Naïve bayes Classifier. And according to the

classification results concern bug is categorized & enlisted

into the appropriate bug classes. Hybrid combination of KNN

& Naïve bayes Classifier also uses bug dataset signature at

the time of bug classification.

7. OVERVIEW OF DATASET

We have used FINDBUGS Categories as our bug

dataset for unstructured bug categories.

Some of Bug categories are:

7.1 Correctness bug

Probable bug - an apparent coding mistake resulting

in code that was probably not what the developer intended.

We strive for a low false positive rate.

7.2 Bad Practice

It is the code which has violations of recommended

and essential coding practice. Examples include hash code

and equals problems, clone able idiom, dropped exceptions,

serializable problems, and misuse of finalize. We strive to

make this analysis accurate, although some groups may not

care about some of the bad practices.

7.3 Dodgy Code

It is the code that is confusing, anomalous, or

written in a way that leads itself to errors. Examples include

dead local stores, switch fall through, unconfirmed casts, and

redundant null check of value known to be null. More false

positives accepted. In previous versions of FindBugs, this

category was known as Style.

7.4 Malicious code vulnerability

It is the code that is vulnerable to malicious code

like Trojan or which can send data to another application.

Such code comes under this class.

7.5 Performance

It is the code that degrades the performance of the

system by some looping or function calling. It mainly

includes boxing and unboxing primitives of a program.

7.6 Security

Code that is vulnerable to security attacks. For Ex:

Hardcoded password that is always constant in database or

constant OTP for all users.

7.7 Multithreaded correctness

Code related to concurrency control and read write

permissions to user in the system. It mainly includes

multithreading program ambiguity. For Ex: In JAVA

multiple run methods cause this kind of issue.

8. EXPERIMENTAL RESULTS

The proposed system is implemented in Java and

MySQL. The dataset is provided with 9 classes from

FindBugs 2.0 that is openly available on GitHub and

SourceForge. The algorithm used for classification is hybrid

combination of KNN and Naïve Bayes and we also provide

comparative study for both this algorithms in terms of Bug

Triage System.Here, different screenshots of GUI are shown

along with their detail descriptions and navigations from one

page to another.

Figure 3: Login Page

International Journal of Advanced Innovative Technology

in Engineering (IJAITE), Vol. 1, Issue 4, July-2016 ISSN: 2455-6491

Copy Right to GARPH Page 52

Figure 4: Main Page

Figure 5: User Registration

Figure 6: Class Insertion

Figure 7: Update Class Detail

Figure 8: Bug Report Submission

Figure 9: Bug Information Page

International Journal of Advanced Innovative Technology

in Engineering (IJAITE), Vol. 1, Issue 4, July-2016 ISSN: 2455-6491

Copy Right to GARPH Page 53

Figure 10: Result Analysis

Figure 11: Bug Allotment

Figure 12: Word count Chart

Figure 13: Term Frequency (TF) Chart

For the result analysis, parameter based comparative analysis

of existing system with proposes system is done. For this

purpose, three versions of C4.5 algorithms are considered &

their observations are taken from previous work and then

compared with the proposed algorithms.

Table of analysis for proposed system

Dataset Algorith

m

Prec

ision

Recall F1 Accur

acy

Eclipse

C4.5 84.9 94.9 89.62

%

81%

AdaBoost

C4.5

resamplin

g

85.0 88.6 86.76

%

77%

AdaBoost

C4.5

reweighti

ng

85.3 88.3 85.8% 75%

FindBu

gs

KNN 72 84 77.5% 73%

NB 80 88 83.8% 84%

Hybrid 92 96 93.9% 95%

.

Table 1: Parameter based comparative result analysis for

proposed system

Bug triage and classification systems can be effectively

analyzed by using precision, recall & F1 measures

parameters which are follows.

Precision = # of appropriate recommendations / # of

recommendations made (1)

Recall = # of appropriate recommendations / # of possibly

relevant developers (2)

F1 measure = 2*Recall*Precision / Recall + Precision

 (3)

International Journal of Advanced Innovative Technology

in Engineering (IJAITE), Vol. 1, Issue 4, July-2016 ISSN: 2455-6491

Copy Right to GARPH Page 54

Figure 14: Comparative result analysis of different algorithm

on bug triage system

Figure 14 and table 1 shows parameter based

Comparative analysis of 3 different algorithms from previous

system against 3 proposed algorithms on bug triage system.

The table contains the results of experimental execution of

system designed by hybrid combination of KNN & NB

Classifier. The parameters considered for concern result

analysis are precision, recall, F1 and accuracy. ECLIPSE and

Find bugs are the dataset of previous work and proposed

work, respectively. From the Figure 6.14 and table 6.1, it is

concluded that the proposed algorithms have better results as

compared to the existing algorithms of previous work.

9. CONCLUSION

Existing bug trailing frameworks don't successfully

aggregate the greater part of the learning required by

engineers. While not this data engineers can't resolve bugs in

an exceedingly convenient manner and afterward we tend to

trust that upgrades to the technique issue trailing frameworks

gather information are required. We condensed criteria that

are utilized in electronic gear bug trailing frameworks. Such

criteria for the most part doesn't give adequate winds up in

depicting bug. In this way, we tend to anticipate an enhanced

arrangement of criteria which will give significantly all the

more fulfilling determination to the present framework. This

work are regularly crucial to the planners of the more

extended term bug and abscond trailing frameworks. They

should get a handle on significance of decision criteria for

depicting bug, as an aftereffect of a well outline bug are

simpler to be follow and illuminated.

In Future, the potency of the projected system is tested on

completely different completely different dataset for

checking the potency of the algorithms on different systems.

We will conjointly merge some additional rules to improvise

the potency of the projected Hybrid algorithm.

10. REFERENCES

[1] JifengXuan, He Jiang, Yan Hu, ZhileiRen, WeiqinZou,

ZhongxuanLuo, and Xindong Wu, ―Towards Effective Bug

Triage with Software Data Reduction Techniques,‖ IEEE

Transactions, Volume 27, NO. 1, JANUARY 2015.

[2] Anjali, Sandeep Kumar Singh, ―Bug Triaging: Profile

Oriented Developer Recommendation‖, International Journal

of Innovative Research in Advanced Engineering (IJIRAE)

ISSN: 2349-2163, Volume 2, Issue 1, January 2015.

[3] S. Artzi, A. Kie_zun, J. Dolby, F. Tip, D. Dig, A.

Paradkar, and M. D.Ernst, “Finding bugs in web applications

using dynamic test generation and explicit-state model

checking,” IEEE Softw., vol. 36, no. 4, pp. 474–494,

Jul./Aug. 2010.

[4] PankajRana, Asst. Prof. Saurabh Sharma “Review of Bug

Serverity Prediction Techniques Using Data Mining”Volume

5, Issue 6,June2015 .

[5] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix

this bug?” in Proc. 28th Int. Conf. Softw. Eng., May 2006,

pp. 361–370.

[6] Naresh Kumar Nagwani, ShrishVerma, “CLUBAS: An

Algorithm and Java Based Tool for Software Bug

Classification Using Bug Attributes Similarities,” Journal of

Software Engineering and Applications, 2012, 5, 436-

447,May 10th, 2012.

[7] P. S. Bishnu and V. Bhattacherjee, “Software fault

prediction using quad tree-based k-means clustering

algorithm,” IEEE Trans. Knowl. Data Eng., vol. 24, no. 6,

pp. 1146–1150, Jun. 2012.

[8] PankajGakare, YogitaDhole,SaraAnjum, ―Bug Triage

with Bug Data Reduction‖, International Research Journal

ofEngineering and Technology (IRJET) e-ISSN: 2395 -

0056,Volume 02 Issue 04, July 2015.

[9] C. C. Aggarwal and P. Zhao, “Towards graphical models

for text processing,” Knowl. Inform. Syst., vol. 36, no. 1, pp.

1–21, 2013.

[10] D. Cubranic and G. C. Murphy, “Automatic bug triage

using text categorization,” in Proc. 16th Int. Conf. Softw.

Eng. Knowl. Eng., Jun. 2004, pp. 92–97.

[11] J. Anvik and G. C. Murphy, ―Reducing the effort of

bug report triage: Recommenders for development-oriented

decisions,‖ ACM Trans. Softw. Eng. Methodol., vol. 20, no.

3, pp. 10:1–10:35, Aug. 2011.

[12] A. K. Farahat, A. Ghodsi, M. S. Kamel, “Efficient

greedy feature selection for unsupervised learning,” Knowl.

Inform. Syst., vol. 35, no. 2, pp. 285–310, May 2013.

[13] K. Gao, T. M. Khoshgoftaar, and A. Napolitano,

“Impact of data sampling on stability of feature selection for

software measurement data,” in Proc. 23rd IEEE Int. Conf.

Tools Artif. Intell., Nov. 2011, pp. 1004–1011.

[14] J. A. Olvera-Lopez, J. A.Carrasco-Ochoa, J. F.

Martınez-Trinidad, and J. Kittler, “A review of instance

selection methods,” Artif. Intell. Rev., vol. 34, no. 2, pp.

133–143, 2010.

[15] C. Sun, D. Lo, S. C. Khoo, and J. Jiang, “Towards more

accurate retrieval of duplicate bug reports,” in Proc. 26th

IEEE/ACM Int. Conf. Automated Softw. Eng., 2011, pp.

253–262.

[16] G.Jeong S. Kim, and T. Zimmermann, ―Improving bug

triage with bug tossing graphs‖, in Proceedings of Seventh

0

20

40

60

80

100

120

C
 4

.5

C
 4

.5
 a

d

C
 4

.5
 r

e

K
N

N

N
B

H
yb

ri
d

P
e

rc
en

ta
ge

Algorithms

Precision

Recall

F1

Accuracy

International Journal of Advanced Innovative Technology

in Engineering (IJAITE), Vol. 1, Issue 4, July-2016 ISSN: 2455-6491

Copy Right to GARPH Page 55

joint meeting ofEuropean Software Engineering Conference

& ACM SIGSOFT symposium on Foundations of software

engineering, ser. ESEC/FSE ’09. New York, NY, USA:

ACM, pp. 111–120, 2009.

[17] R. S. Pressman, ―Software engineering: A

Practitioner’s Approach‖, 7th ed. New York, NY, USA:

McGraw-Hill, 2010.

[18] S. Shivaji, E. J. Whitehead, Jr., R. Akella, and S. Kim,

“Reducing features to improve code change based bug

prediction,” IEEE Trans. Soft. Eng., vol. 39, no. 4, pp. 552–

569, Apr. 2013

[19] T. Zimmermann, N. Nagappan, P. J. Guo, and B.

Murphy, “Characterizing and predicting which bugs get

reopened,” in Proc. 34
th

 Int. Conf. Softw. Eng., Jun. 2012,

pp. 1074–1083.

 [20] T. Zimmermann, R. Premraj, N. Bettenburg, S. Just, A.

Schr€oter, and C. Weiss, “What makes a good bug report?”

IEEE Trans. Softw. Eng., vol. 36, no. 5, pp. 618–643, Oct.

2010.

[21] Y. Fu, X. Zhu, and B. Li, “A survey on instance

selection for active learning,” Knowl. Inform. Syst., vol. 35,

no. 2, pp. 249–283, 2013.

[22] I. Guyon and A. Elisseeff, “An introduction to variable

and feature selection,” J. Mach. Learn. Res., vol. 3, pp.

1157–1182, 2003.

[23] A. Srisawat, T. Phienthrakul, and B. Kijsirikul, “SV-

kNNC: An algorithm for improving the efficiency of k-

nearest neighbor,” in Proc. 9
th
 Pacific Rim Int. Conf. Artif.

Intell., Aug. 2006, pp. 975–979.

[24] J. Tang, J. Zhang, R. Jin, Z. Yang, K. Cai, L. Zhang, and

Z. Su, “Topic level expertise search over heterogeneous

networks,” Mach. Learn., vol. 82, no. 2, pp. 211–237, Feb.

2011.

 [25] I. H. Witten, E. Frank, and M. A. Hall, Data Mining:

Practical Machine Learning Tools and Techniques, 3
rd

 ed.

Burlington, MA, USA: Morgan Kaufmann, 2011.

[26] D. R. Wilson and T. R. Martinez, “Reduction techniques

for instance-based learning algorithms,” Mach. Learn., vol.

38,pp. 257–286, 2000.

 [27] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An

approach to detecting duplicate bug reports using natural

language and execution information,” in Proc. 30
th
 Int. Conf.

Softw. Eng., May 2008,

pp. 461–470.

[28] J. Xuan, H. Jiang, Z. Ren, and Z. Luo, “Solving the

large scale next release problem with a backbone based

multilevel algorithm,” IEEE Trans. Softw. Eng., vol. 38, no.

5, pp. 1195–1212, Sept./Oct.

2012.

[29] J. Xuan, H. Jiang, Z. Ren, J. Yan, and Z. Luo,

“Automatic bug triage using semi-supervised text

classification,” in Proc. 22
nd

 Int. Conf. Softw. Eng. Knowl.

Eng., Jul. 2010, pp. 209–214.

[30] J. Xuan, H. Jiang, Z. Ren, and W. Zou, “Developer

prioritization in bug repositories,” in Proc. 34th Int. Conf.

Softw. Eng., 2012, pp. 25–35.

