International Journal of Advanced Innovative Technology
in Engineering (1IJAITE), Vol. 1, Issue 2, March-2016 ISSN: 2455-6491

“AN APPROACH FOR EFFICIENT QUERY PROCESSING FOR MATERIALIZED VIEW SELECTION AND
MAINTENANCE”

'SARVESH ANASANE
NUVA College of Engineering & Technology, Nagpur
sarvesh.anasane@gmail.com

’PROF. SHYAM P. DUBEY
“NUVA College of Engineering & Technology, Nagpur
shyam.dubeyO6@gmail.com

ABSTRACT: The ability to afford decision makers with both accurate and timely consolidated information as well as rapid
query response times is the fundamental requirement for the success of a Data Warehouse. To provide fast access, a data
warehouse stores materialized views of the sources of its data. As a result, a data warehouse needs to be maintained to keep its
contents consistent with the contents of its data sources. To improve the affection of OLAP queries is an important aspect of data
warehouse domain. It affects the efficiency of queries in data warehouse directly. Base on the PBUS algorithm, a novel method is
proposed to select materialized views of multidimensional data called dynamic selection Strategy. Another technique is the hybrid
mediator is an integration system where one part of data is queried on demand as in the virtual approach, while another part is
extracted, filtered and stored in a local database. Statistical analysis on existing query set help to predict the attributes likely to
be used for future queries. The materialized views are generated accordingly.

Keywords: materialization view, data warehousing, hybrid integration system, Dynamic Selection Strategy, OLAP, data

warehousing
1. INTRODUCTION

Data warehouse (DW) can be defined as subject-oriented,
integrated, nonvolatile, and time-variant collection of data in
support of management’s decision [2]. It can bring together
selected data from multiple database or other information
sources into a single repository [3]. To avoid accessing from
base table and increase the speed of queries posed to a DW, we
can use some intermediate results from the query processing
stored in the DW called materialized views. Materialized views
are created over existing tables to maintain the set of data
which are likely to be accessed frequently by the users. It is
pre-computed and summarized data set where from the user
queries are answered. This enables fast query execution, as the
result set is constructed from summarized data set instead of
large tables. This result construction process is started at first,
by accessing the materialized views. However, if the desired
data is not present in the materialized views then the original
tables are accessed to complete the result set construction
process.

Availability of desired data in the materialized views is
termed as hit and the non-availability of desired data is termed
as miss. The ratio of hit and (miss + hit) is termed as hit ratio.
A better hit-ratio is an indication of well performing
materialized view. This materialized view construction process
is guided by this quantitative metric. Based on the given
constraints or specifications the knowledge of quantitative
metric is applied to finally generate the materialized views.
This need to select an appropriate set of views to materialize
for answering queries, this was denoted Materialized View
Selection (MVS) and maintenance the selected view denoted
Maintenance of Materialized View (MMV). [1-3]

Data warehouse is to provide information about online
analytical processing like decision support and data mining to
decision makers. The father of the data warehouse, W.H.Inmon
[1], first expounded the thought and theory about data
warehouse systematically. He defined the data warehouse

as a collection of subject-oriented, integrated, non-volatile and
time-variant data with the purpose to support managers’
decision-making. data warehouse would consume a great deal
of time when it stores data with many dimensions, make an
inquiry used OLAP, and conduct aggregation algorithm, Sum,
Count, Max, Min,Average etc., which reduces the use
efficiency of the data warehouse.

A lot of work has been done to solve this problem such as
the PBS algorithm [2] and PBUS algorithm [3]. PBUS
algorithm and further adjustment of PBUS algorithm during the
specific usage in order to get better results. For this reason,
method of materialized view was used to improve the speed of
OLAP queries. This information is generally heterogeneous,
stored in autonomous and distributed sources. Thus, it becomes
necessary to introduce an intermediate and intelligent system.
This one should satisfy the following requirements: on one
hand it should provide a single point of access to these sources,
on the other hand, it should make the aspects of autonomy,
distribution and heterogeneity transparent.

2. RELATED WORK

Harinarayan et al. [21] presented a greedy algorithm for the
selection of materialized views so that query evaluation costs
canbe optimized in the special case of “data cubes”. However,
the costs for view maintenance and storage were not addressed
in this piece of work. Yang et al. [5] proposed a heuristic
algorithm which utilizes a Multiple View Processing Plan
(MVPP) to obtain an optimal materialized view selection, such
that the best combination of good performance and low
maintenance cost can be achieved. However, this algorithm did
not consider the system storage constraints. Himanshu Gupta
and Inderpal Singh Mumick [8] developed a greedy algorithm
to incorporate the maintenance cost and storage constraint in
the selection of data warehouse materialized views. Amit
Shukla et al. [12] proposed a simple and fast heuristic
algorithm, PBS, to select aggregates for precomputation. PBS

Copy Right to GARPH

Page 11

International Journal of Advanced Innovative Technology

in Engineering (1IJAITE), Vol. 1, Issue 2, March-2016

runs several orders of magnitude faster than BPUS, and is fast
enough to make the exploration of the time-space tradeoff
feasible during system configuration.The requirement of
creating materialized views has been also found useful in the
other large data centric applications such as data warehouse or
data mining. The importance of materialized view is that it is
stored permanently in storage elements. Whereas, ordinary
views are loaded with data every time it is called. Thus in real
life applications materialized views are found to be more
suitable to reduce query execution time. Materialized view
creation involves several issues to consider. However, the main
concern is to ensure availability of higher amount of user
requested data directly from materialized views. Automated
selection [13] of materialized views in large data oriented
application is desirable for dynamic changes. A survey work is
carried out here to give the idea of how the different
methodologies have been applied over the years to generate
materialized views. V. Harinarayan et. al. applied greedy
algorithm [1] to select materialized views to optimize query
evaluation costs of “data cubes”. This work does not address
view maintenance and storage issues. A heuristic algorithm [2]
was described to utilize Multiple View Processing Plan
(MVPP) to obtain an optimal materialized view selection.

The objective of this work is to achieve the combination of
good performance and low maintenance cost. This research
work is motivated to measure the relationship among several
attributes in the form of a quantitative metric using a robust
mathematical model, which is implemented here using line
fitting algorithm.

The primary intent of this research is to selecting views to
materialize so as to achieve finer query response in low time by
reducing the total cost associated with the materialized views.
The proposed work exploits materialize the candidate views by
taking into consideration of query frequency, query processing
cost and space requirement. In order to find the frequent
queries, we make use of Item set Mining (IM) techniques from
which the frequently user accessible queries will be generated.

3. APPROACHES TO MATERIALIZED VIEW
SELECTION (MVS)

The challenge behind the first phase is to materialize the
candidate views by taking into consideration of query
frequency, query processing cost and space requirement. In
order to find the frequent queries, we make use of ltem set
mining techniques from which the frequently user accessible
queries will be generated. Then, an appropriate set of views can
be selected to materialize by minimizing the total query
response time and/or the storage space along with maximizing
the query frequency. These can be utilized by the users to
obtain the quicker results once a set of views is materialized for
the data warehouse. The input to the proposed approach is data
warehouse model, DW and a user’s table (UT) that contains the
list of queries used by the number of users. For materialized
view, the queries that are mostly used by the users should be
selected but, at the same time, the query processing cost should
be less. According to, we have used the data ware house, DW
that contains four tables. The schema of the data ware house
used in the proposed approach is represented with four various
tables such as customer (T1), order (T2), product (T3) and
vehicle (T4). Here, ‘order’ (T2) is a target table, which consists
of four field records such as OrderID, ProductlD, CustomerID

ISSN: 2455-6491

and Time of buying where, ProductID and CustomerID are two
foreign key relations. The order table contains one tuple for
each new order, and its key is OrderID. The customer table
contains details about the customer and its field records are
customerID, Name, Age, Housetype and City.

The relationship among the multiple tables presented in the
example is represented as: T2 —»T1; T2 »T3 and T4->T1,
where Ti —Tj means that the foreign key of table Ti is the
primary key of Tj.

" " IS e

CUSTONMER ORDER PRODUCT

< Clustomer 1)

* Name

~COirddor 11D < Product 11

«Age

— House ty pe

*Time

«Clity

Mo

— Vaohicle 11

«Cluntomer 11D

A. Benefit of Materialized View

The purpose of materializing the view is to increase the
efficiency of query, also representing the decrease of cost.
Given the query collection Q, the cost is total time of querying
Q. And for a given view V, the difference of the cost between
pre-materialization and after materialization is called the
efficiency of view V.

In order to response a query Q, we should first find the view
with equal grade of query Q. If the view has been materialized,
we can read it directly, otherwise we can get it from the
minimal materialized view of the query Q. In conclusion, a
view should be identified to carry a query, we could suppose
this view as V, Harinarayan [5] found out through an
experience, that time is proportional to size |v| when we use
view V to response query Q, and the |v| can be seen as the cost
of the query. However, it is not simple to estimate the size of a
data joint, documentation [4] discussed many methods to solve
this problem. To identify classes of data most queried, an
algorithm called CM (Cluster and Merge) [12] [13] [14] was
proposed.

This algorithm receives as input a description of the
distribution of user queries, and provides in output a set of
classes, compact, representing data patterns present in those
queries.

This algorithm has three steps:

o Classification of queries: it is to determine the categories of
data which the user is interested.

o Classification of attribute groups: it is to determine the
groups of attributes for each class.

o Merging classes: merge the data classes to make the classes
that are most compact.

A. Classification of queries
In this step, the algorithm determines the set of subclasses of
each query, and the subclasses of interest. Those are inserted in

Copy Right to GARPH

Page 12

International Journal of Advanced Innovative Technology

in Engineering (1IJAITE), Vol. 1, Issue 2, March-2016

the ontology if they are not already present. For example, a
query of the form:

SELECT A FROM S WHERE P

Where A is the set of attributes queried in S, P = {P1, P2, Pn}
predicates specifying constraints of the query, and SP subclass
of S satisfying P. All subclasses of interest is expressed by
{Sp1, Sp2, ..., Spn}, where Pi are forming individual predicates
P, and Spi subclass of S satisfying Pi For example, consider the
following query:

SELECT population, area FROM_COUNTRY

WHERE region = “Europe” AND government = “Republic”

In this query, the subclasses of interest are "European

Country" and "Republic Country".

COUNTRY
ASIAN- A COMMUNIST-
COUNTRY COUNTRY
EUROPEAN- | [AUSTRALIAN- | [REPUBLIC-
COUNTRY COUNTRY COUNTRY
EUROPEAN-
REPUBLIC-
COUNTRY

Fig.1. The ontology of subclasses of COUNTRY.

B. Classification of attribute groups

After the step of classification of queries, an ontology of
classes is obtained, and for each class, the attribute groups
queried and with what frequency. In this step, CM merges the
attribute groups with similar frequencies to reduce the number
of groups for each class. The merger is accomplished if the
difference between their frequencies is less than a threshold
known as CLUSTER-DIFFERENCE.

C. Merging classes

It is important that the number of data classes be reduced to
improve queries processing. Thus, we should merge them when
it is possible. Consider, for example, the classes of information:

EUROPEAN-COUNTRY, {POPULATION, AREA}
ASIAN-COUNTRY, {POPULATION, AREA}
AFRICAN-COUNTRY, {POPULATION, AREA}
N.AMERICAN-COUNTRY, {POPULATION, AREA}
S.AMERICAN-COUNTRY, {POPULATION, AREA}
AUSTRALIAN-COUNTRY, {POPULATION, AREA}

Finding the parameters of view selection cost

Then, we have built one user’s table, UT to find the
frequency of every query for computing the query frequency
cost. The user’s table is denoted as, UT consisting of ‘m’
columns and ‘n’ rows. Every row signifies the number of users
who are used the data ware house to find the important
information by posing the queries. Every column signifies the
set of queries used by the corresponding users. Here, the users

ISSN: 2455-6491

table is maintained for the input data ware house model so that
the query frequency computation can be possible. Once a user’s
table is built, we can select a set of views for materialization.
By considering these, we make use of the IMine algorithm,
Index Support for Item Set Mining to mine the frequent
queries. The advantage of the IMine algorithm is that it can
mine the frequent queries with less computation time due to its
IMine index structure compared with the traditional algorithms
like, Apriori and FP-Growth. So, we have applied IMine
algorithm to user’s query table UT for finding the frequent
queries and their corresponding support value. The main
objective is that the spatial cost and query processing cost
should be minimized but, the frequency-based cost should be
maximized. The reason behind is that, if the query is to be
materialized, then the query should be frequently used by the
number of users.

4. OUR APPROACH

Our solution is an approach based on user behavior and their
interactions with the system, particularly the distribution of
their queries, to create the set of views to materialize.
It is divided into two phases:
* Creating candidate views for materialization: Based on the
distribution of queries previously posed on the system, we
extract all data most queried by users. These data are then
classified as views.
* Selecting views to materialize: In this step, we select from
among all the views created in the first phase, those that will be
effectively materialized.

A. Creating candidate views for materialization

In our approach, we assumed that a data pattern is present in
user queries, i.e. certain categories of data will be queried more
frequently than others. Thus, it will be very useful to extract
these patterns given the basis of which we will create the
candidate views for materialization. This phase is divided into
three steps:

* Extracting the attributes of interest

* Creating schemas of views.

* Extracting the most frequent constraints for each attribute and
creating views.

We now describe the steps of our approach in more detail.
1) Extracting the attributes of interest.

Generally in a mediation system, a global schema
representing the domain of use is provided. It is in terms of the
latter are expressed the user queries. We analyze these queries
to determine, among all the attributes of this schema, those in
which users are interested, i.e. the most frequent attributes. For
that, we are based on a set of queries posed previously for
identify the information most queried. Let SQ = {Q,
Q2,....Qng} all queries taken as input, and SA,= {A;,
A2,....... Anno} the set of attributes present in the global
schema.

The frequency of the attribute Ai is expressed by:

Copy Right to GARPH

Page 13

International Journal of Advanced Innovative Technology

in Engineering (1IJAITE), Vol. 1, Issue 2, March-2016

ISSN: 2455-6491

NoA
FA= sego

Where NA,; is the number of appearance of the attribute A;. The

average frequency of attributes is expressed by:
NAg

1
FM = E FA,
NAo £Ls

i=

The attributes whose frequency is lower than the average
frequency will be eliminated. We then obtain the set SA= {A,,
A2,...Ana} of attributes which appear in the candidate views,
where NA is the number of selected attributes. To do this, we
defined the procedure EXTRACT_ATTRIBUTES.
SA={};
EXTRACT_ATTRIBUTES (SQ){
SAg=get_All_ Attributes(SQ);
NAg=cardinality (SAg) ;
FOR (i=1 TO NAy){
NA; =0 ;
FOR (ALL Q IN SQ){
S=get_All_Attributes(Q)| ;
IF (A; IN S){

NA; = NA;+1;
3
}
FA;=NA;/NAg;
}
FM=Average(FA;)

1si=NAg
FOR (i=1 TO NAy){
IF(FA;>FM){
SA = SA UNION {A;}

}

}
The attributes obtained in this step will appear in the candidate
views. It should then be collected in compact classes, or what
we called the "views schemas". Thus is that we present in the
next section.

2) Creation of views schemas

The problem of creating schemas is equivalent to a
classification problem. Thus, we seek to create a compact set of
attributes classes.

Different classification algorithms have been proposed. The
most popular is k-Means. It partitions a dataset or points in k
classes. Each class is represented by a center of gravity or
centroid. From these centers, k-means calculates the distances
to various points and they are attributed to the nearest centroid.
Consider for example a dataset Xx;, Xy,..., Xy to classified into k
disjoint classes Ci where ie[1,k], each one contains Ni points
where Ni €[0,N]. Thus, k-means is in three steps:

(i) Initialize randomly k center c1, c2, ck by data points. For
each point xt, and all k classes, repeating

Steps (ii) and (iii) until the sum of intra-classes distances
cannot decrease.

(ii) Calculate the distance from xt to different cluster centers
and assign it to that who’s centroid is the nearest.

(iii) Recalculate the centroids of the different classes. In our
case, it is impossible to define the centroids, and so we will not
have the ability to calculate the distances.

3) Extraction of constraints
Until now, we have defined the attributes most queried. We
have gathered these attributes in compact classes. We should
then define the values (or constraints) of attributes of each
class.
This phase is divided into three steps:
e Extraction of the most frequent values for each attribute.
o Definition of the most frequent instances of each class.
e Merging of instances of each class in a single.

B. Selection of views to materialize

The views created in the first phase of our approach cannot be
all materialized. Indeed, the space for materialization, the
frequency of update and the cost of access to sources is critical.
A set of selection criteria have been defined in [Hadi 2012] and
[Bichutskiy 2006], namely:

* The frequency of change: the views that rarely change are
good candidates for materialization.

* The size of views: the views of small sizes are favoured for
materialization than large ones.

* The availability of sources: The views, whose data resides in
sources that are rarely available, should be materialized.

 The cost of access: the materialization of views whose data
resides in sources with a high cost of access will improve the
system performance.

Thus, a view will be materialized, if it satisfies at least two
criteria.

I11. Dynamic Modulating Strategy of Materialized Views

After the given space is filled with materialized views, and
finishing the selection of materialized view though PBUS
algorithm. It is also needed to adjust the dynamic modulating
strategy of materialized views with the specific situation. The
reasons are as follows: (1) The new views should be
materialized to meet new queries (2) Take two views v and u in
the view sets, among which v is materialized before u. When it
is v that is materialized, for the whole query Q of data
warehouse, the relatively benefit value is greater than the value
of u. However, after more and more views are materialized, the
benefit value of view v could be smaller. That is because many
virtual views of response query choosing v would look for
materialized views that have smaller cost and partial order to
response, which lead to larger benefit of view u than view v.
Because of the reasons above, DSAMV algorithm was put
forward, which further optimize the selection on the foundation
of PBUS algorithm.
DSAMV algorithm:
Materialized View)

{

(Dynamic Selection Algorithm of

Copy Right to GARPH

Page 14

International Journal of Advanced Innovative Technology

in Engineering (1IJAITE), Vol. 1, Issue 2, March-2016

ISSN: 2455-6491

Input: The initial selected materialized view set S through
PBUS algorithm, multidimensional grid A

Output: Optimized set of materialized view S

Space=0:

do

{ For view of S, rank ordering from small to large according

to the relative effectiveness Bo(v, S)/|v|, then get {vi};

Choose the largest view w which belongs to A but

Bo(v, S)/|v| of S;

Accumulate the view sizes that have minimum benefit

until Space + >_ |v,| > |w]:
=%

if Z BQ("n - S) > BQ(“L S) break:

=1

eclse
ivis{vi} U {va}t U .. U {v,]
S={S-{ vi}} U {w}
2
Space=— :: |\', I —l“'l >
i—=1

While(Z B, (v,.S) < B, (w.S))
=3

Return S

Suppose the efficiency time B (v, S) Q of each materialized
view v as m, and there are n views in materialized view S, then
we can count the calculation efficiency and order time, which is
O(mn + nlogn). And time complexity of the DSAMYV algorithm
does not exceed O (mn2 + n2logn). There are two view
adjustment methods; the batch adjustment which varies from
time period and the timely adjustment when there is an
occurrence of a query. It is a more natural way to choose one of
the methods though.

5. APPROACHES TO MATERIALIZED VIEW
MAINTENANCE (MVM)

This section describes the detailed procedure of the designed
approach to view maintenance. The principle behind the second
module is to handle the maintenance problem without
recomputing the materialized views. For example, if the data
warehouse gets updated (Addition and deletion of data source)
after selecting materialized view, the corresponding updating
data source should be reflected in the view. In order to deal
with the updating and deletion of data source, the output of the
query should be given by considering the updated data records
without re-computing the whole process. Accordingly, we have
designed an approach to view maintenance without accessing
the data warehouse or view. The process of updation and
deletion can be happened whenever the data sources are
updating the records to the original data warehouse. The
diagram given in figure 2 describes the data warehouse
updation from the data sources and figure 3 describes the
overall procedure of the proposed approach.

Figure 3: Data warehouse updating from the multiple sources,

Dt

winrehouse

L4
I N
Solection ol
malernlized view

‘: Query Res Query Funetion ‘ Query Altribute Data Souree)
E lablke Tal |

Table |

_ | Data Souree
2
'

Diana Sowmee
n

e N
Tempormy o
version Tahie
Ulpdining Mg ——

j View i
Retieshing

Figure 4: View Maintenance process

Relimed goery resull

5.1. Representation of changes

Once we generate the materialized view for the specific data
records, the maintenance of materialized view is important. In
order to maintain the information about the materialized view,
the following types should be handled. Let, V = R1 «[R2
«[JR3 be the set of relations in the materialized view and R be
the relations denoted as, R = (A, B, C). Here, the data
warehouse updation especially data record changes can be done
in three different ways such as, (1) insertion, (2) deletion and,
(3) modification of data record.

(1) Insertion: Let <DW> be the original data warehouse house
and if new record Ri is added into the original data warehouse,
the data warehouse will be changed to < DW + Ri >.

(2) Deletion: Let the data record, Ri be defined in the original
data warehouse and < DW - Ri > is denoted like the data record
deleted from the original data warehouse < DW >.

(3) Modification of data record: Let Ri be the data record
defined in the < DW > and the specified data record Ri is
changed to Ri . But, there is no addition or deletion in the data
ware house and there is a change as < DW - Ri’ - Ri >,

5.2 Maintaining tables in updating manager

The ultimate aim of this phase is to build the approach that
should reflect the changes done in the updation phase by
considering the maintenance cost. Actually, the original data
warehouse obtains the data from the multiple data sources that
may be in different places. So, the data warehouse can be
updated from the multiple data sources that are connected with
the different data sources. The view maintenance process is
initiated by the updating manager when the data gets added or

Copy Right to GARPH

Page 15

International Journal of Advanced Innovative Technology

in Engineering (1IJAITE), Vol. 1, Issue 2, March-2016

ISSN: 2455-6491

deleted in ‘n’ number of times. Once the ‘n’ updates occurred,
the corresponding updates should be reflected in the query
output using the depicted procedure. In the updating manager,
four tables are maintained about to query attributes, function,
query result table and temporary table using LSI index. After
constructing the materialized view, the three tables are
constructed from the view definition. These three tables are
necessary to update the materialized view without accessing the
original data warehouse and materialized view.

1) Query attribute table AT: This table contain N*M matrix,
where N is the number of queries materialized and M is the
number of attributes within the queries materialized. The values
within the matrix may be zero or one, based on whether the
attribute is defined in the query or not. The binary values only
defined within the query attribute table so that it can be named
as binary matrix. This table is used to relate the updated record
with the attributes of the query materialized. This table is
formed to identify the tables which are relevant to the query.

2) Query function table FT: This function table maintains the
functions of the queries materialized so that the relevant
function of the queries can be performed on the updated record.
The query function table is represented with the matrix N*K,
where ‘N’ is the number of queries materialized and ‘K’ is the
function utilized in the query. This table is necessary to find out
the comparison predicate, which restricts the rows to be added
to the materialized view.

3) Temporary version table TT: This table maintains the
detailed information of the updated record. Here, the table
contains whether the data is inserted, deleted or updated along
with the version id. The detailed information of the updated
record is located in the temporary version table after the view
maintenance process finished. Once the view maintenance
process finished for the particular updates, the relevant data
will be deleted from the temporary version table that will help
to reduce the space complexity.

4) Query result table RT: This table may be represented as,
N*1 matrix, where, N represents the number of queries
materialized, Here, the query results of every materialized
queries are maintained so that the refreshing the query is easy.

6. CONCLUSION

The key to improve the efficiency of data warehouse query is
to choice view materialization accurately. While the method of
PBUS and PBS algorithm can only make an initial option of
the best benefits of the view, without the ability to adjust over
time. On the basis of the PBUS algorithm, we proposed
DSAMV algorithm, which chooses the best view for
materialization dynamically, and further improve the efficiency
of OLAP queries. The maintenance of views to materialize is
one of the most important issues in designing a data warehouse.
The view selection problem and materialized view maintenance
problem have been addressed in this paper by means of taking
into account the essential constraints for selecting views to
materialize so as to achieve the best combination of low storage
cost, low query processing cost and high frequency of query
and updation of materialized view using LSI. The research on
materialized view creation is getting more importance over the

Copy Right to GARPH

time as the numbers of users as well as the transactions are
increasing for any real life system. This paper proposes a novel
method of creating materialized views by analyzing the
association among different attributes in the given relation
using statistical method. This presents a quantitative measure of
degree of relationship among the attributes. The knowledge of
this quantitative measure helps to build the materialized view.
Attribute is one of the most granular level of data
representation. As this analysis is entirely based on the lowest
level of granularity, the accuracy of the constructed
materialized views are high. Moreover the proposed
methodology is independent of the application areas. Hence it
is applicable to any data-centric system. In our approach, the
views are created based on a number of queries posed
previously on the system. This is done one time. So that, the
views are unchangeable during the system use. However, the
distribution of user queries can change over time. Thus, we
propose as a perspective, adding a dynamic aspect to our
approach for taking into account the evolution of the
distribution of user queries. The distribution of user queries is
the only factor on which we were based in the personalization
of the system. it is very interesting to exploit the user profile
built, implicitly or explicitly, for each user in the process of
personalization.

7. REFERENCES

[1] Dr.T.Nalini, Dr.A.Kumaravel, Dr.K.Rangarajan,”A Novel
Algorithm with IM-LSI Index For Incremental Maintenance of
Materialized View” JCS&T Vol. 12 No. 1 April 2012

[2] B.Ashadevi, R.Balasubramanian,” Cost Effective Approach
for Materialized Views Selection in Data Warehousing
Environment”, IJCSNS International Journal of Computer
Science and Network Security, VOL.8 No.10, October 2008

[3] Gupta, H. & Mumick, 1., Selection of Views to Materialize
in a Data Warehouse. IEEE Transactions on Knowledge and
Data Engineering, 17(1), 24-43, 2005.

[4] Yang, J., Karlapalem. K. and Li. Q. (1997). A framework
for designing materialized views in a data warehousing
environment. Proceedings of the Seventieth IEEE International
Conference on Distributed Computing systems, USA, pp: 458.

[5] V.Harinarayan, A. Rajaraman, and J. Ullman.
“Implementing data cubes efficiently”. Proceedings of ACM
SIGMOD 1996 International Conference on Management of
Data, Montreal, Canada, pages 205--216, 1996.

[6] A. Shukla, P. Deshpande, and J. F. Naughton, “Materialized
view selection for the multidimensional datasets,” in Proc. 24th
Int. Conf. Very Large Data Bases, 1998, pp. 488-499.

[7] Wang, X., Gruenwalda. L., and Zhu.G. (2004). A

performance analysis of view maintenance techniques for data
warehouses. Data warehouse knowledge, pp: 1-41.

Page 16

International Journal of Advanced Innovative Technology
in Engineering (1IJAITE), Vol. 1, Issue 2, March-2016

ISSN: 2455-6491

[8] Mr. P. P. Karde, Dr. V. M. Thakare. “Selection &
Maintenance of Materialized View and It’s Application for
Fast Query Processing: A Survey”. Proceedings of
International Journal of Computer Science & Engineering
Survey (IJCSES) Vol.1, No.2, November 2010

[9] Abdulaziz S. Almazyad, Mohammad Khubeb Siddiqui.
“Incremental View Maintenance: An Algorithmic Approach”.
Proceedings of International Journal of Electrical & Computer
Sciences IJECS-1JENS Vol: 10 No: 03

Copy Right to GARPH

Page 17

