

International Journal of Advanced Innovative Technology

in Engineering (IJAITE), Vol. 1, Issue 2, March-2016 ISSN: 2455-6491

Copy Right to GARPH Page 11

“AN APPROACH FOR EFFICIENT QUERY PROCESSING FOR MATERIALIZED VIEW SELECTION AND

MAINTENANCE”

1
SARVESH ANASANE

1
NUVA College of Engineering & Technology, Nagpur

sarvesh.anasane@gmail.com

2
PROF. SHYAM P. DUBEY

2
NUVA College of Engineering & Technology, Nagpur

shyam.dubey06@gmail.com

ABSTRACT: The ability to afford decision makers with both accurate and timely consolidated information as well as rapid

query response times is the fundamental requirement for the success of a Data Warehouse. To provide fast access, a data

warehouse stores materialized views of the sources of its data. As a result, a data warehouse needs to be maintained to keep its

contents consistent with the contents of its data sources. To improve the affection of OLAP queries is an important aspect of data

warehouse domain. It affects the efficiency of queries in data warehouse directly. Base on the PBUS algorithm, a novel method is

proposed to select materialized views of multidimensional data called dynamic selection Strategy. Another technique is the hybrid

mediator is an integration system where one part of data is queried on demand as in the virtual approach, while another part is

extracted, filtered and stored in a local database. Statistical analysis on existing query set help to predict the attributes likely to

be used for future queries. The materialized views are generated accordingly.

Keywords: materialization view, data warehousing, hybrid integration system, Dynamic Selection Strategy, OLAP, data

warehousing

1. INTRODUCTION

Data warehouse (DW) can be defined as subject-oriented,

integrated, nonvolatile, and time-variant collection of data in

support of management’s decision [2]. It can bring together

selected data from multiple database or other information

sources into a single repository [3]. To avoid accessing from

base table and increase the speed of queries posed to a DW, we

can use some intermediate results from the query processing

stored in the DW called materialized views. Materialized views

are created over existing tables to maintain the set of data

which are likely to be accessed frequently by the users. It is

pre-computed and summarized data set where from the user

queries are answered. This enables fast query execution, as the

result set is constructed from summarized data set instead of

large tables. This result construction process is started at first,

by accessing the materialized views. However, if the desired

data is not present in the materialized views then the original

tables are accessed to complete the result set construction

process.

Availability of desired data in the materialized views is

termed as hit and the non-availability of desired data is termed

as miss. The ratio of hit and (miss + hit) is termed as hit ratio.

A better hit-ratio is an indication of well performing

materialized view. This materialized view construction process

is guided by this quantitative metric. Based on the given

constraints or specifications the knowledge of quantitative

metric is applied to finally generate the materialized views.

This need to select an appropriate set of views to materialize

for answering queries, this was denoted Materialized View

Selection (MVS) and maintenance the selected view denoted

Maintenance of Materialized View (MMV). [1-3]

Data warehouse is to provide information about online

analytical processing like decision support and data mining to

decision makers. The father of the data warehouse, W.H.Inmon

[1], first expounded the thought and theory about data

warehouse systematically. He defined the data warehouse

as a collection of subject-oriented, integrated, non-volatile and

time-variant data with the purpose to support managers’

decision-making. data warehouse would consume a great deal

of time when it stores data with many dimensions, make an

inquiry used OLAP, and conduct aggregation algorithm, Sum,

Count, Max, Min,Average etc., which reduces the use

efficiency of the data warehouse.

A lot of work has been done to solve this problem such as

the PBS algorithm [2] and PBUS algorithm [3]. PBUS

algorithm and further adjustment of PBUS algorithm during the

specific usage in order to get better results. For this reason,

method of materialized view was used to improve the speed of

OLAP queries. This information is generally heterogeneous,

stored in autonomous and distributed sources. Thus, it becomes

necessary to introduce an intermediate and intelligent system.

This one should satisfy the following requirements: on one

hand it should provide a single point of access to these sources,

on the other hand, it should make the aspects of autonomy,

distribution and heterogeneity transparent.

2. RELATED WORK

Harinarayan et al. [21] presented a greedy algorithm for the

selection of materialized views so that query evaluation costs

canbe optimized in the special case of “data cubes”. However,

the costs for view maintenance and storage were not addressed

in this piece of work. Yang et al. [5] proposed a heuristic

algorithm which utilizes a Multiple View Processing Plan

(MVPP) to obtain an optimal materialized view selection, such

that the best combination of good performance and low

maintenance cost can be achieved. However, this algorithm did

not consider the system storage constraints. Himanshu Gupta

and Inderpal Singh Mumick [8] developed a greedy algorithm

to incorporate the maintenance cost and storage constraint in

the selection of data warehouse materialized views. Amit

Shukla et al. [12] proposed a simple and fast heuristic

algorithm, PBS, to select aggregates for precomputation. PBS

International Journal of Advanced Innovative Technology

in Engineering (IJAITE), Vol. 1, Issue 2, March-2016 ISSN: 2455-6491

Copy Right to GARPH Page 12

runs several orders of magnitude faster than BPUS, and is fast

enough to make the exploration of the time-space tradeoff

feasible during system configuration.The requirement of

creating materialized views has been also found useful in the

other large data centric applications such as data warehouse or

data mining. The importance of materialized view is that it is

stored permanently in storage elements. Whereas, ordinary

views are loaded with data every time it is called. Thus in real

life applications materialized views are found to be more

suitable to reduce query execution time. Materialized view

creation involves several issues to consider. However, the main

concern is to ensure availability of higher amount of user

requested data directly from materialized views. Automated

selection [13] of materialized views in large data oriented

application is desirable for dynamic changes. A survey work is

carried out here to give the idea of how the different

methodologies have been applied over the years to generate

materialized views. V. Harinarayan et. al. applied greedy

algorithm [1] to select materialized views to optimize query

evaluation costs of “data cubes”. This work does not address

view maintenance and storage issues. A heuristic algorithm [2]

was described to utilize Multiple View Processing Plan

(MVPP) to obtain an optimal materialized view selection.

The objective of this work is to achieve the combination of

good performance and low maintenance cost. This research

work is motivated to measure the relationship among several

attributes in the form of a quantitative metric using a robust

mathematical model, which is implemented here using line

fitting algorithm.

The primary intent of this research is to selecting views to

materialize so as to achieve finer query response in low time by

reducing the total cost associated with the materialized views.

The proposed work exploits materialize the candidate views by

taking into consideration of query frequency, query processing

cost and space requirement. In order to find the frequent

queries, we make use of Item set Mining (IM) techniques from

which the frequently user accessible queries will be generated.

3. APPROACHES TO MATERIALIZED VIEW

SELECTION (MVS)

The challenge behind the first phase is to materialize the

candidate views by taking into consideration of query

frequency, query processing cost and space requirement. In

order to find the frequent queries, we make use of Item set

mining techniques from which the frequently user accessible

queries will be generated. Then, an appropriate set of views can

be selected to materialize by minimizing the total query

response time and/or the storage space along with maximizing

the query frequency. These can be utilized by the users to

obtain the quicker results once a set of views is materialized for

the data warehouse. The input to the proposed approach is data

warehouse model, DW and a user’s table (UT) that contains the

list of queries used by the number of users. For materialized

view, the queries that are mostly used by the users should be

selected but, at the same time, the query processing cost should

be less. According to, we have used the data ware house, DW

that contains four tables. The schema of the data ware house

used in the proposed approach is represented with four various

tables such as customer (T1), order (T2), product (T3) and

vehicle (T4). Here, ‘order’ (T2) is a target table, which consists

of four field records such as OrderID, ProductID, CustomerID

and Time of buying where, ProductID and CustomerID are two

foreign key relations. The order table contains one tuple for

each new order, and its key is OrderID. The customer table

contains details about the customer and its field records are

customerID, Name, Age, Housetype and City.

The relationship among the multiple tables presented in the

example is represented as: T2 T1; T2 T3 and T4T1,

where Ti Tj means that the foreign key of table Ti is the

primary key of Tj.

A. Benefit of Materialized View

The purpose of materializing the view is to increase the

efficiency of query, also representing the decrease of cost.

Given the query collection Q, the cost is total time of querying

Q. And for a given view V, the difference of the cost between

pre-materialization and after materialization is called the

efficiency of view V.

In order to response a query Q, we should first find the view

with equal grade of query Q. If the view has been materialized,

we can read it directly, otherwise we can get it from the

minimal materialized view of the query Q. In conclusion, a

view should be identified to carry a query, we could suppose

this view as V, Harinarayan [5] found out through an

experience, that time is proportional to size |v| when we use

view V to response query Q, and the |v| can be seen as the cost

of the query. However, it is not simple to estimate the size of a

data joint, documentation [4] discussed many methods to solve

this problem. To identify classes of data most queried, an

algorithm called CM (Cluster and Merge) [12] [13] [14] was

proposed.

This algorithm receives as input a description of the

distribution of user queries, and provides in output a set of

classes, compact, representing data patterns present in those

queries.

This algorithm has three steps:

 Classification of queries: it is to determine the categories of

data which the user is interested.

 Classification of attribute groups: it is to determine the

groups of attributes for each class.

 Merging classes: merge the data classes to make the classes

that are most compact.

A. Classification of queries

In this step, the algorithm determines the set of subclasses of

each query, and the subclasses of interest. Those are inserted in

International Journal of Advanced Innovative Technology

in Engineering (IJAITE), Vol. 1, Issue 2, March-2016 ISSN: 2455-6491

Copy Right to GARPH Page 13

the ontology if they are not already present. For example, a

query of the form:

SELECT A FROM S WHERE P

Where A is the set of attributes queried in S, P = {P1, P2, Pn}

predicates specifying constraints of the query, and SP subclass

of S satisfying P. All subclasses of interest is expressed by

{Sp1, Sp2, ..., Spn}, where Pi are forming individual predicates

P, and Spi subclass of S satisfying Pi For example, consider the

following query:

SELECT population, area FROM_COUNTRY

WHERE region = “Europe” AND government = “Republic”

In this query, the subclasses of interest are "European

Country" and "Republic Country".

B. Classification of attribute groups

After the step of classification of queries, an ontology of

classes is obtained, and for each class, the attribute groups

queried and with what frequency. In this step, CM merges the

attribute groups with similar frequencies to reduce the number

of groups for each class. The merger is accomplished if the

difference between their frequencies is less than a threshold

known as CLUSTER-DIFFERENCE.

C. Merging classes

It is important that the number of data classes be reduced to

improve queries processing. Thus, we should merge them when

it is possible. Consider, for example, the classes of information:

 EUROPEAN-COUNTRY, {POPULATION, AREA}

 ASIAN-COUNTRY, {POPULATION, AREA}

 AFRICAN-COUNTRY, {POPULATION, AREA}

 N.AMERICAN-COUNTRY, {POPULATION, AREA}

 S.AMERICAN-COUNTRY, {POPULATION, AREA}

 AUSTRALIAN-COUNTRY, {POPULATION, AREA}

 Finding the parameters of view selection cost

Then, we have built one user’s table, UT to find the

frequency of every query for computing the query frequency

cost. The user’s table is denoted as, UT consisting of ‘m’

columns and ‘n’ rows. Every row signifies the number of users

who are used the data ware house to find the important

information by posing the queries. Every column signifies the

set of queries used by the corresponding users. Here, the users

table is maintained for the input data ware house model so that

the query frequency computation can be possible. Once a user’s

table is built, we can select a set of views for materialization.

By considering these, we make use of the IMine algorithm,

Index Support for Item Set Mining to mine the frequent

queries. The advantage of the IMine algorithm is that it can

mine the frequent queries with less computation time due to its

IMine index structure compared with the traditional algorithms

like, Apriori and FP-Growth. So, we have applied IMine

algorithm to user’s query table UT for finding the frequent

queries and their corresponding support value. The main

objective is that the spatial cost and query processing cost

should be minimized but, the frequency-based cost should be

maximized. The reason behind is that, if the query is to be

materialized, then the query should be frequently used by the

number of users.

4. OUR APPROACH

Our solution is an approach based on user behavior and their

interactions with the system, particularly the distribution of

their queries, to create the set of views to materialize.

It is divided into two phases:

• Creating candidate views for materialization: Based on the

distribution of queries previously posed on the system, we

extract all data most queried by users. These data are then

classified as views.

• Selecting views to materialize: In this step, we select from

among all the views created in the first phase, those that will be

effectively materialized.

A. Creating candidate views for materialization

In our approach, we assumed that a data pattern is present in

user queries, i.e. certain categories of data will be queried more

frequently than others. Thus, it will be very useful to extract

these patterns given the basis of which we will create the

candidate views for materialization. This phase is divided into

three steps:

• Extracting the attributes of interest

• Creating schemas of views.

• Extracting the most frequent constraints for each attribute and

 creating views.

 We now describe the steps of our approach in more detail.

1) Extracting the attributes of interest.

Generally in a mediation system, a global schema

representing the domain of use is provided. It is in terms of the

latter are expressed the user queries. We analyze these queries

to determine, among all the attributes of this schema, those in

which users are interested, i.e. the most frequent attributes. For

that, we are based on a set of queries posed previously for

identify the information most queried. Let SQ = {Q1,

Q2,.....QNQ} all queries taken as input, and SA0= {A1,

A2,........ANAO} the set of attributes present in the global

schema.

The frequency of the attribute Ai is expressed by:

International Journal of Advanced Innovative Technology

in Engineering (IJAITE), Vol. 1, Issue 2, March-2016 ISSN: 2455-6491

Copy Right to GARPH Page 14

FAi=
i

Where NAi is the number of appearance of the attribute Ai. The

average frequency of attributes is expressed by:

The attributes whose frequency is lower than the average

frequency will be eliminated. We then obtain the set SA= {A1,

A2,....ANA} of attributes which appear in the candidate views,

where NA is the number of selected attributes. To do this, we

defined the procedure EXTRACT_ATTRIBUTES.

The attributes obtained in this step will appear in the candidate

views. It should then be collected in compact classes, or what

we called the "views schemas". Thus is that we present in the

next section.

2) Creation of views schemas

The problem of creating schemas is equivalent to a

classification problem. Thus, we seek to create a compact set of

attributes classes.

Different classification algorithms have been proposed. The

most popular is k-Means. It partitions a dataset or points in k

classes. Each class is represented by a center of gravity or

centroid. From these centers, k-means calculates the distances

to various points and they are attributed to the nearest centroid.

Consider for example a dataset x1, x2,..., xN to classified into k

disjoint classes Ci where i[1,k], each one contains Ni points

where Ni [0,N]. Thus, k-means is in three steps:

(i) Initialize randomly k center c1, c2, ck by data points. For

 each point xt, and all k classes, repeating

 Steps (ii) and (iii) until the sum of intra-classes distances

cannot decrease.

(ii) Calculate the distance from xt to different cluster centers

and assign it to that who’s centroid is the nearest.

(iii) Recalculate the centroids of the different classes. In our

case, it is impossible to define the centroids, and so we will not

have the ability to calculate the distances.

3) Extraction of constraints

Until now, we have defined the attributes most queried. We

have gathered these attributes in compact classes. We should

then define the values (or constraints) of attributes of each

class.

This phase is divided into three steps:

 Extraction of the most frequent values for each attribute.

 Definition of the most frequent instances of each class.

 Merging of instances of each class in a single.

B. Selection of views to materialize

The views created in the first phase of our approach cannot be

all materialized. Indeed, the space for materialization, the

frequency of update and the cost of access to sources is critical.

A set of selection criteria have been defined in [Hadi 2012] and

[Bichutskiy 2006], namely:

• The frequency of change: the views that rarely change are

good candidates for materialization.

• The size of views: the views of small sizes are favoured for

materialization than large ones.

• The availability of sources: The views, whose data resides in

sources that are rarely available, should be materialized.

• The cost of access: the materialization of views whose data

resides in sources with a high cost of access will improve the

system performance.

Thus, a view will be materialized, if it satisfies at least two

criteria.

III. Dynamic Modulating Strategy of Materialized Views

After the given space is filled with materialized views, and

finishing the selection of materialized view though PBUS

algorithm. It is also needed to adjust the dynamic modulating

strategy of materialized views with the specific situation. The

reasons are as follows: (1) The new views should be

materialized to meet new queries (2) Take two views v and u in

the view sets, among which v is materialized before u. When it

is v that is materialized, for the whole query Q of data

warehouse, the relatively benefit value is greater than the value

of u. However, after more and more views are materialized, the

benefit value of view v could be smaller. That is because many

virtual views of response query choosing v would look for

materialized views that have smaller cost and partial order to

response, which lead to larger benefit of view u than view v.

Because of the reasons above, DSAMV algorithm was put

forward, which further optimize the selection on the foundation

of PBUS algorithm.

DSAMV algorithm: (Dynamic Selection Algorithm of

Materialized View)

{

International Journal of Advanced Innovative Technology

in Engineering (IJAITE), Vol. 1, Issue 2, March-2016 ISSN: 2455-6491

Copy Right to GARPH Page 15

Input: The initial selected materialized view set S through

PBUS algorithm, multidimensional grid A

Output: Optimized set of materialized view S

Space=0:

do

{ For view of S, rank ordering from small to large according

to the relative effectiveness BQ(v, S)/|v|, then get {vi};

Choose the largest view w which belongs to A but

BQ(v, S)/|v| of S;

Accumulate the view sizes that have minimum benefit

Suppose the efficiency time B (v, S) Q of each materialized

view v as m, and there are n views in materialized view S, then

we can count the calculation efficiency and order time, which is

O(mn + nlogn). And time complexity of the DSAMV algorithm

does not exceed O (mn2 + n2logn). There are two view

adjustment methods; the batch adjustment which varies from

time period and the timely adjustment when there is an

occurrence of a query. It is a more natural way to choose one of

the methods though.

5. APPROACHES TO MATERIALIZED VIEW

MAINTENANCE (MVM)

This section describes the detailed procedure of the designed

approach to view maintenance. The principle behind the second

module is to handle the maintenance problem without

recomputing the materialized views. For example, if the data

warehouse gets updated (Addition and deletion of data source)

after selecting materialized view, the corresponding updating

data source should be reflected in the view. In order to deal

with the updating and deletion of data source, the output of the

query should be given by considering the updated data records

without re-computing the whole process. Accordingly, we have

designed an approach to view maintenance without accessing

the data warehouse or view. The process of updation and

deletion can be happened whenever the data sources are

updating the records to the original data warehouse. The

diagram given in figure 2 describes the data warehouse

updation from the data sources and figure 3 describes the

overall procedure of the proposed approach.

Figure 3: Data warehouse updating from the multiple sources,

Figure 4: View Maintenance process

5.1. Representation of changes

Once we generate the materialized view for the specific data

records, the maintenance of materialized view is important. In

order to maintain the information about the materialized view,

the following types should be handled. Let, V = R R2

R3 be the set of relations in the materialized view and R be

the relations denoted as, R = (A, B, C). Here, the data

warehouse updation especially data record changes can be done

in three different ways such as, (1) insertion, (2) deletion and,

(3) modification of data record.

(1) Insertion: Let <DW> be the original data warehouse house

and if new record Ri is added into the original data warehouse,

the data warehouse will be changed to < DW + Ri >.

(2) Deletion: Let the data record, Ri be defined in the original

data warehouse and < DW - Ri > is denoted like the data record

deleted from the original data warehouse < DW >.

(3) Modification of data record: Let Ri be the data record

defined in the < DW > and the specified data record Ri is

changed to Ri ’. But, there is no addition or deletion in the data

ware house and there is a change as < DW - Ri’ - Ri >.

5.2 Maintaining tables in updating manager

The ultimate aim of this phase is to build the approach that

should reflect the changes done in the updation phase by

considering the maintenance cost. Actually, the original data

warehouse obtains the data from the multiple data sources that

may be in different places. So, the data warehouse can be

updated from the multiple data sources that are connected with

the different data sources. The view maintenance process is

initiated by the updating manager when the data gets added or

International Journal of Advanced Innovative Technology

in Engineering (IJAITE), Vol. 1, Issue 2, March-2016 ISSN: 2455-6491

Copy Right to GARPH Page 16

deleted in ‘n’ number of times. Once the ‘n’ updates occurred,

the corresponding updates should be reflected in the query

output using the depicted procedure. In the updating manager,

four tables are maintained about to query attributes, function,

query result table and temporary table using LSI index. After

constructing the materialized view, the three tables are

constructed from the view definition. These three tables are

necessary to update the materialized view without accessing the

original data warehouse and materialized view.

1) Query attribute table AT: This table contain N*M matrix,

where N is the number of queries materialized and M is the

number of attributes within the queries materialized. The values

within the matrix may be zero or one, based on whether the

attribute is defined in the query or not. The binary values only

defined within the query attribute table so that it can be named

as binary matrix. This table is used to relate the updated record

with the attributes of the query materialized. This table is

formed to identify the tables which are relevant to the query.

2) Query function table FT: This function table maintains the

functions of the queries materialized so that the relevant

function of the queries can be performed on the updated record.

The query function table is represented with the matrix N*K,

where ‘N’ is the number of queries materialized and ‘K’ is the

function utilized in the query. This table is necessary to find out

the comparison predicate, which restricts the rows to be added

to the materialized view.

3) Temporary version table TT: This table maintains the

detailed information of the updated record. Here, the table

contains whether the data is inserted, deleted or updated along

with the version id. The detailed information of the updated

record is located in the temporary version table after the view

maintenance process finished. Once the view maintenance

process finished for the particular updates, the relevant data

will be deleted from the temporary version table that will help

to reduce the space complexity.

4) Query result table RT: This table may be represented as,

N*1 matrix, where, N represents the number of queries

materialized, Here, the query results of every materialized

queries are maintained so that the refreshing the query is easy.

6. CONCLUSION

The key to improve the efficiency of data warehouse query is

to choice view materialization accurately. While the method of

PBUS and PBS algorithm can only make an initial option of

the best benefits of the view, without the ability to adjust over

time. On the basis of the PBUS algorithm, we proposed

DSAMV algorithm, which chooses the best view for

materialization dynamically, and further improve the efficiency

of OLAP queries. The maintenance of views to materialize is

one of the most important issues in designing a data warehouse.

The view selection problem and materialized view maintenance

problem have been addressed in this paper by means of taking

into account the essential constraints for selecting views to

materialize so as to achieve the best combination of low storage

cost, low query processing cost and high frequency of query

and updation of materialized view using LSI. The research on

materialized view creation is getting more importance over the

time as the numbers of users as well as the transactions are

increasing for any real life system. This paper proposes a novel

method of creating materialized views by analyzing the

association among different attributes in the given relation

using statistical method. This presents a quantitative measure of

degree of relationship among the attributes. The knowledge of

this quantitative measure helps to build the materialized view.

Attribute is one of the most granular level of data

representation. As this analysis is entirely based on the lowest

level of granularity, the accuracy of the constructed

materialized views are high. Moreover the proposed

methodology is independent of the application areas. Hence it

is applicable to any data-centric system. In our approach, the

views are created based on a number of queries posed

previously on the system. This is done one time. So that, the

views are unchangeable during the system use. However, the

distribution of user queries can change over time. Thus, we

propose as a perspective, adding a dynamic aspect to our

approach for taking into account the evolution of the

distribution of user queries. The distribution of user queries is

the only factor on which we were based in the personalization

of the system. it is very interesting to exploit the user profile

built, implicitly or explicitly, for each user in the process of

personalization.

7. REFERENCES

[1] Dr.T.Nalini, Dr.A.Kumaravel, Dr.K.Rangarajan,”A Novel

Algorithm with IM-LSI Index For Incremental Maintenance of

Materialized View” JCS&T Vol. 12 No. 1 April 2012

[2] B.Ashadevi, R.Balasubramanian,” Cost Effective Approach

for Materialized Views Selection in Data Warehousing

Environment”, IJCSNS International Journal of Computer

Science and Network Security, VOL.8 No.10, October 2008

[3] Gupta, H. & Mumick, I., Selection of Views to Materialize

in a Data Warehouse. IEEE Transactions on Knowledge and

Data Engineering, 17(1), 24-43, 2005.

[4] Yang, J., Karlapalem. K. and Li. Q. (1997). A framework

for designing materialized views in a data warehousing

environment. Proceedings of the Seventieth IEEE International

Conference on Distributed Computing systems, USA, pp: 458.

[5] V.Harinarayan, A. Rajaraman, and J. Ullman.

“Implementing data cubes efficiently”. Proceedings of ACM

SIGMOD 1996 International Conference on Management of

Data, Montreal, Canada, pages 205--216, 1996.

[6] A. Shukla, P. Deshpande, and J. F. Naughton, “Materialized

view selection for the multidimensional datasets,” in Proc. 24th

Int. Conf. Very Large Data Bases, 1998, pp. 488–499.

[7] Wang, X., Gruenwalda. L., and Zhu.G. (2004). A

performance analysis of view maintenance techniques for data

warehouses. Data warehouse knowledge, pp: 1-41.

International Journal of Advanced Innovative Technology

in Engineering (IJAITE), Vol. 1, Issue 2, March-2016 ISSN: 2455-6491

Copy Right to GARPH Page 17

[8] Mr. P. P. Karde, Dr. V. M. Thakare. “Selection &

Maintenance of Materialized View and It’s Application for

Fast Query Processing: A Survey”. Proceedings of

International Journal of Computer Science & Engineering

Survey (IJCSES) Vol.1, No.2, November 2010

[9] Abdulaziz S. Almazyad, Mohammad Khubeb Siddiqui.

“Incremental View Maintenance: An Algorithmic Approach”.

Proceedings of International Journal of Electrical & Computer

Sciences IJECS-IJENS Vol: 10 No: 03

